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A B S T R A C T

Despite the growing importance of the digital sector, research on economic complexity and its implications 
continues to rely mostly on administrative records—e.g. data on exports, patents, and employment—that have 
blind spots when it comes to the digital economy. In this paper we use data on the geography of programming 
languages used in open-source software to extend economic complexity ideas to the digital economy. We esti
mate a country's software economic complexity index (ECIsoftware) and show that it complements the ability of 
measures of complexity based on trade, patents, and research to account for international differences in GDP per 
capita, income inequality, and emissions. We also show that open-source software follows the principle of 
relatedness, meaning that a country's entries and exits in programming languages are partly explained by its 
current pattern of specialization. Together, these findings help extend economic complexity ideas and their 
policy implications to the digital economy.

1. Introduction

The study of economic complexity has predominantly relied on 
administrative records, such as international trade data (Hidalgo et al., 
2007; Hidalgo and Hausmann, 2009), patent filings (Balland and Rigby, 
2017; Kogler et al., 2013), and employment statistics (Jara-Figueroa 
et al., 2018; Neffke and Henning, 2013), that while valuable, struggle to 
capture the importance of the digital economy. This “dark matter” 
(Greenstein and Nagle, 2014) is important because software capa
bilities—which are human capital intensive—represent a mobile and 
transmissible source of economic complexity that is relevant for policy 
efforts focused on increasing the complexity of economies (Hidalgo, 
2023). Yet, despite this evident need, internationally comparable esti
mates of software-related economic complexity remain limited.

Economic complexity refers to the structure and breadth of produc
tive capabilities embedded or implicit in an economy's industries, 
products, or workforce (Hidalgo and Hausmann, 2009; Hausmann et al., 
2014; Hidalgo, 2021). Methodologically, its modeled using two key 
concepts: the economic complexity index (ECI) and the idea of relatedness.

The economic complexity index (ECI) provides a mean to estimate 
the combined presence of an economy's capabilities without having to 
define them (Hidalgo and Stojkoski, 2025). It is often used to anticipate 
macroeconomic outcomes, such as long-term economic growth (Hidalgo 
and Hausmann, 2009, Domini, 2022, Chávez et al., 2017, Stojkoski 
et al., 2023a, 2023b), since economies endowed with diverse capabil
ities can recombine them into more complex and higher value added 
products (Hidalgo and Stojkoski, 2025). Relatedness asserts that regions 
and countries diversify into new activities when these share capabilities 
with those that an economy is currently specialized in (Hidalgo et al., 
2007; Neffke et al., 2011; Neffke and Henning, 2013; Hausmann et al., 
2014; Hidalgo et al., 2018; Hidalgo, 2021; Balland et al., 2022). For 
instance, a country with expertise in data analytics and high- 
performance computing is more likely to expand into fields that build 
upon that foundation, such as artificial intelligence, than countries 
lacking these complementary specializations.

While economic complexity methods have expanded to include 
trade, patents, employment, and research publication data, their appli
cation to the digital sector remains limited. Software capabilities are 
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only partially visible in these metrics and digital capabilities are insuf
ficiently expressed in physical product data (Rahmati et al., 2021; 
Stojkoski et al., 2024). Code crosses borders through cloud services, 
downloads, and remote platforms rather than through customs, and 
digital firms often create local subsidiaries that obscure trade flows even 
further. Moreover, service trade categories remain notoriously broad 
(including groupings such as “computer and information services”); and 
patents record protectable inventions rather than the open knowledge 
embedded in everyday programming.

Yet, these data limitations are at odds with the growing importance 
of the digital economy and the role played by open-source software 
(OSS). IT technologies and software development are predictors of firm 
productivity, innovation capacity, and economic growth (Brynjolfsson 
and Hitt, 2003, 1998; Rahmati et al., 2021). Within this sector, OSS li
braries have become essential building blocks (Eghbal, 2020), with OSS 
participation predicting higher entrepreneurial activity (Wright et al., 
2023) and value-added productivity in ecosystems with complementary 
capabilities (Nagle, 2019, 2018; Rock, 2019). In the US alone, annual 
investment in OSS was estimated to be about $38bn in 2019 (Korkmaz 
et al., 2024), and government subsidies to OSS generate large returns 
(Gortmaker, 2025). As it is known for complex and innovative activities 
(Audretsch and Feldman, 1996; Balland et al., 2020), OSS development 
is human capital-intensive, geographically concentrated (Wachs et al., 
2022), and open to international collaboration (Goldbeck, 2025). This 
suggests software capabilities may follow spatial patterns distinct from 
traditional complexity metrics.

Taken together, the growing importance of the digital economy, the 
key role that open-source software plays in it, and the remaining open 
questions about the geography of software capabilities, represent a 
critical gap in economic complexity research. Moreover, it remains un
clear whether the “complexity” of the digital economy substitutes or 
complements traditional complexity metrics. In this paper, we address 
these gaps by exploring the question: Do economic complexity measures 
based on the geography of open-source software production correlate with 
macroeconomic indicators like GDP per capita, inequality, and emissions, 
complementing complexity measures based on trade, research, and patents?

In this study, we use data on the geographic distribution of OSS 
projects hosted on GitHub to generate a national-level software eco
nomic complexity index (ECIsoftware). Our main specification constructs 
ECIsoftware from clusters of programming languages frequently used 
together in repositories. The cluster-based measure summarizes the di
versity and sophistication of a country's software capabilities in a way 
that is comparable across countries and aligned with how developers 
combine technologies in practice. We then link ECIsoftware to GDP per 
capita, inequality measured through the Gini coefficient, and CO₂-per- 
GDP from the World Bank and compare its explanatory power with 
complexity indices based on trade, patents, and research. Our analyses 
show that ECIsoftware captures a digital capability dimension that while 
correlated with trade-, patent- and research-based complexity measures 
(R2 ~ 0.5–0.6) adds significant explanatory power in cross-country 
models of GDP per capita and income inequality. In addition, we show 
that countries' entries and exits in programming languages follows the 
principle of relatedness, confirming that digital diversification mirrors 
path-dependence observed in physical industries.

By incorporating software into the complexity toolbox, we provide 
evidence that digital specialization is reshaping economic structures and 
creating new pathways for structural transformation. From a policy 
perspective, the accessibility and granularity of open-source software 
data offers a cost-effective and reproducible means to track and poten
tially enhance economic complexity research, providing policymakers a 
new route to design interventions focused on fostering digital capabil
ities. Unlike traditional development strategies focused on infrastruc
ture and physical capital, fostering digital complexity relies more on 
human capital development and knowledge spillovers within software 
ecosystems (Apostol and Hernández-Rodríguez, 2024; Balland et al., 
2022; Brynjolfsson and Saunders, 2010; Korkmaz et al., 2024), and thus, 

represents a new frontier for applied and fundamental work in economic 
geography and economic complexity research.

2. Economic complexity and open-source software production

2.1. Complexity, relatedness and the digital sector

Economic complexity involves the use of fine-grained data on ac
tivities to capture economic structure and shifts in specialization pat
terns (Balland et al., 2022; Domini, 2022; Guevara et al., 2016; 
Hausmann et al., 2014; Hidalgo et al., 2018, 2007; Hidalgo, 2021; Hi
dalgo and Hausmann, 2009; Hidalgo and Stojkoski, 2025; Poncet and de 
Waldemar, 2015; Stojkoski et al., 2023b). These structural measures are 
used to explain variation in macroeconomic outcomes, such as economic 
growth (Pérez-Balsalobre et al., 2019; Chávez et al., 2017; Domini, 
2022; Hausmann et al., 2014; Hidalgo and Hausmann, 2009; Koch, 
2021; Poncet and de Waldemar, 2013; Stojkoski et al., 2016, 2023b; 
Weber et al., 2021), income and gender inequality (Bandeira Morais 
et al., 2018; Ben Saâd and Assoumou-Ella, 2019; Chu and Hoang, 2020; 
Hartmann et al., 2017; Lee and Vu, 2019; Sbardella et al., 2017), and 
emissions (Can and Gozgor, 2017; Doğan et al., 2021; Lapatinas et al., 
2019; Mealy and Teytelboym, 2020; Romero and Gramkow, 2021). In 
the last fifteen years, these methods grew into popular indicators for 
international and regional development policy (Balland et al., 2022; 
Hidalgo, 2023, 2021) together with methods designed to explain shifts 
in specialization, building on the principle of relatedness (Hidalgo et al., 
2018): the notion that economies diversify by entering activities that 
reuse some of their existing capabilities. Relatedness metrics highlight 
path dependencies and help predict which industries, products, research 
activities, or technologies are likely to grow or decline in a country, city, 
or region (Alabdulkareem et al., 2018; Apostol and Hernández-Rodrí
guez, 2024; Boschma et al., 2013; Guevara et al., 2016; Hidalgo et al., 
2018, 2007; Jara-Figueroa et al., 2018; Kogler et al., 2013; Li and 
Neffke, 2024; Neffke et al., 2011; Neffke and Henning, 2013; Poncet and 
de Waldemar, 2015). Complexity metrics then provide a comparative 
estimate of the value of a region's specialization pattern.

But while economic complexity methods enjoy significant adoption 
in policy and academia, their application is still limited by the avail
ability of fine-grained data. Like the proverbial man looking for his keys 
under the lamppost, economic complexity efforts thus far have focused 
on international trade statistics (Hidalgo et al., 2007; Hidalgo and 
Hausmann, 2009), manufacturing, payroll, firm registry, and employ
ment data for industries (Chávez et al., 2017; Fritz and Manduca, 2021; 
Gao and Zhou, 2018; Hidalgo, 2021; Jara-Figueroa et al., 2018; Neffke 
et al., 2011; Neffke and Henning, 2013), data on occupations 
(Alabdulkareem et al., 2018; Farinha et al., 2019; Jara-Figueroa et al., 
2018; Muneepeerakul et al., 2013), patents (Balland and Rigby, 2017; 
Kogler et al., 2013), and research papers (Chinazzi et al., 2019; Guevara 
et al., 2016; Stojkoski et al., 2023b). This expansion recently led to the 
introduction of multidimensional economic complexity (Stojkoski et al., 
2023b), the notion that metrics of complexity derived from multiple 
datasets complement each other to explain macroeconomic outcomes (e. 
g. trade and patent complexity estimates explain economic growth 
better together than alone). But with the exception of some recent work 
on digital trade (Stojkoski et al., 2023a), digital infrastructure (Liang 
and Tan, 2024), and software components in physical products (Rahmati 
et al., 2021), the multidimensional expansion of economic complexity is 
yet to fully reach the digital sector, despite work highlighting the 
importance of software outside economic complexity research (Shapiro 
and Varian, 1999; Chattergoon and Kerr, 2022).

For instance Aum and Shin (2024) emphasize the critical role played 
by software in modern economies, highlighting how it substitutes labor 
with high elasticity. Branstetter et al. (2019) find that firms, not only 
technology firms, with greater software intensity measured by patenting 
activity achieve greater returns to R&D. These results suggest that data 
on software activity can predict macro level growth. Moreover, the 
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growth of the digital economy and its integration into the offline 
economy is thought to reduce greenhouse emissions (Liu et al., 2023; 
Zhang et al., 2024). The impact of digitalization and software produc
tion on inequality outcomes is less clear, as unequal access and winner 
take all dynamics may compound inequality (Arthur, 1994), while 
growth in access to information and employment opportunities may 
shrink it (Tian et al., 2025).

In practice the question of how software complexity influences 
macroeconomic outcomes like growth, inequality and emissions, re
mains unclear because economic complexity research still suffers from a 
“digital blind-spot”. This is due to the lack of datasets that capture a 
detailed view of software-related activity (Balland and Rigby, 2017; 
Chávez et al., 2017; Guevara et al., 2016; Stojkoski et al., 2023b). This 
gap hinders our ability to apply the insights derived from other datasets 
to digital industries, making it difficult to—for instance—forecast which 
digital diversification efforts are more likely to succeed or estimate how 
software capabilities evolve and cluster over time.

There is in fact some evidence hinting to the notion that data used 
traditionally to study economic complexity can miss digital capabilities. 
Economic complexity estimates derived from trade data (Hidalgo and 
Hausmann, 2009) may not align well with software, which crosses 
borders through cloud services, downloads, or remote platforms rather 
than through standard customs channels (Corrado et al., 2005; Stojkoski 
et al., 2023a). As a result, trade data may systematically underestimate 
digital activity. Service trade data should be an alternative, but it is 
notoriously coarse, with categories such as “Computer and Information 
Services”, which are too broad to distinguish basic IT outsourcing from 
advanced software development. Moreover, software production is 
often carried out through subsidiaries, obscuring the real geography of 
capabilities. Furthermore, open-source projects and collaborative code 
repositories do not appear as discrete tradeable goods (Greenstein and 
Nagle, 2014; Korkmaz et al., 2024) since many software products are 
monetized via subscriptions, advertising, or freemium models, making 
them hard to track in conventional trade records. When it comes to 
employment statistics, software is also represented through coarse in
dustry categories, such as “Software Publishing,” and coarse occupa
tions, such us “Software developers” which provide no information 
about the programming languages used or the applications created by 
this segment of the labor force.

In short, it is difficult to describe an economy's digital capabilities 
using traditional data sources. This limits our understanding of the path- 
dependent dynamics and sophistication of digital economies. Countries 
or regions that excel in certain digital fields may not show up clearly in 
traditional complexity data, undercutting our ability to understand 
related diversification in their context. More generally, we cannot tell 
how productive capabilities in this sector relate to important macro
economic outcomes such as income, growth, inequality and the carbon 
intensity of economies. Digital or software complexity may complement 
or substitute classic economic complexity estimates, which are signifi
cant predictors of these outcomes. But to understand whether these are 
complements or substitutes, we need to test these ideas empirically.

2.2. Conceptualizing software complexity

Insofar we have argued that data used to commonly estimate eco
nomic complexity fails to capture information about an economy's dig
ital capabilities. But what data can we use to approximate capabilities 
implicit in the digital economy? Here, we follow a two-pronged 
approach, building on data on programming languages and software 
bundles.

Programming languages provide an unusually fine-grained and 
consistent trace of digital production. A language is not only a syntax but 
a technical paradigm formed by an ecosystem of tools, libraries, and 
conventions that shapes how software is built and maintained (Valverde 
and Solé, 2015a,b). Language adoption indicates embedded knowledge 
and skills: familiarity with syntax, common practices, and domain- 

focused applications (e.g., AI, cybersecurity, or high-performance 
computing).

Languages are also meaningful categories because their ecosystems 
exhibit strong social and market dynamics. The value of adopting a 
language often depends on the availability of complementary 
assets—libraries, frameworks, documentation, and experienced devel
opers—so technology choices reflect local talent pools and ecosystem 
maturity rather than purely technical merits (Meyerovich and Rabkin, 
2013). These complementarities generate switching costs: the primary 
barrier to adopting a new language is frequently the surrounding tool
chain and library landscape rather than the syntax itself (Shrestha et al., 
2022). As a result, language portfolios tend to evolve in path-dependent 
ways, with organizations moving to technologically proximate ecosys
tems (e.g., within enterprise stacks or within data science stacks) rather 
than jumping arbitrarily. For these reasons, programming languages can 
play a role in software-based comparisons of economies that is analo
gous to product categories or technology classes in traditional 
complexity measures: they are observable, comparable across places, 
and tied to capability accumulation.

Languages, however, are not the natural “activity unit” of software 
production: most modern software systems rely on bundles of languages 
that are used together as part of a coherent development stack (e.g., 
front-end web, data science, low-level systems). Treating each language 
as an independent activity risks fragmenting what practitioners and 
firms would recognize as a single capability bundle. To align the mea
surement unit with how software diversification is typically con
ceptualized—around software genres, use cases, and ecosystems rather 
than individual technologies—we aggregate languages into clusters 
based on their revealed co-use within repositories (Boudreau, 2012; 
Cennamo and Santaló, 2019). The key idea is that repeated co-use 
identifies stable bundles of complementary capabilities: languages that 
are frequently used together tend to be part of the same development 
stack, and these stacks are closer to the activities whose diversification 
and sophistication economic complexity methods are designed to cap
ture. in patent-based complexity, patent classes are already higher-level, 
use-oriented groupings rather than the underlying set of technologies 
used to produce the patent. Analogously, our co-use clusters summarize 
software capability bundles rather than individual syntaxes, while still 
being grounded in observable production choices.

In the empirical analysis, we therefore treat languages as the un
derlying building blocks and use software bundles as the main unit of 
observation. We construct these clusters using a project-level dataset of 
all public GitHub repositories active up to 2024 and the set of pro
gramming languages used in each repository. These clusters are inter
pretable as capability bundles—e.g., a front-end web stack (HTML/CSS/ 
JavaScript), a data science stack (Python/Jupyter Notebook), or low- 
level systems tooling (C/Assembly/Makefile)—and provide a tractable 
and stable basis for country-level specialization patterns. We addition
ally compute versions based on individual languages, theoretically 
defined language groupings, and GitHub topics; these are used only as 
robustness checks and reported in the Supplementary Information.

2.3. Scope and contribution

Traditional approaches to economic complexity overlook much of 
the software sector's intangible and rapidly evolving nature. Program
ming languages, in particular clusters of languages defined by comple
mentary use, offer a way to fill this gap by reflecting embedded 
knowledge, illustrating specialized skills, and revealing path-dependent 
growth patterns.

Specifically, we address economic complexity's digital gap by using 
data on the country level geographic distribution of programming lan
guages and bundles used in OSS projects to estimate economic 
complexity for the software sector and explore the principle of related
ness in the context of OSS. This work does not aim to introduce a new 
method to estimate economic complexity, but simply to apply an 
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existing method to new data and explore the complementarity of these 
estimates to those derived from well-known data sources (product ex
ports, patents, and research publications). We acknowledge that there 
has been considerable work exploring alternative mathematical defini
tions of economic complexity, such as the transformational complexity 
measure (Natera and Castellacci, 2021), the Log Product Diversity 
(Inoua, 2023), the Ability index (Bustos and Yıldırım, 2022), and the 
Fitness complexity (Tacchella et al., 2012). Unlike these contributions, 
our paper does not involve the introduction of a new mathematical 
definition but the application of the Hidalgo and Hausmann (2009)
definition of economic complexity to open-source software data.

In the next section we present the data and methods used to calculate 
these indicators and then explore their ability to explain international 
variance in GDP per capita, income inequality, and emissions that is 
unaccounted for by measures of complexity based on trade, patents, and 
research papers. We then construct a network of related open-source 
software bundles to explore the principle of relatedness in the context 
of software.

3. Data and the construction of economic complexity measures

We begin by describing the data sources and methods used to 
construct the country–activity matrices used in the complexity analysis. 
A key step is that we treat programming languages as an observable 
building blocks of software production but aggregate them into the 
software bundles (a.k.a. technology stacks) used in practice. We then 
apply the standard economic complexity methods to this coun
try–bundle matrix. Finally, we construct a software bundle relatedness 
network to test the principle of relatedness.

We use data on the geography of open-source software provided by 
the GitHub Innovation Graph (GHIG).1 GitHub is the leading platform 
for OSS development, with over 100 million users worldwide. The 
dataset presents the number of GitHub users pushing code—uploading 
local code from a developer's machine to an online repository—by 
country and programming language on a quarterly basis starting from 
Q1 2020 and continuing until Q4 2023. GHIG data assigns software 
contributions to countries based on the IP address of the developer. This 
data provides a more accurate measure of a location's software activity 
than sources relying on self-reported locations, which are known to 
suffer from bias (Hecht et al., 2011). After completing the basic data 
cleaning procedures explained in section S1 of the Supplementary in
formation, we are left with a sample of 163 countries and 150 pro
gramming languages for the period of 2020–2023.

To define the activity categories used in our main ECIsoftware speci
fication, we group programming languages into clusters based on their 
complementary use within repositories. We build these clusters from a 
separate project-level dataset constructed as follows. First, we identified 
GitHub repositories that were active in 2024 using GHArchive. Second, 
for each active repository we queried the GitHub GraphQL API to 
retrieve its set of programming languages. Repositories typically contain 
multiple languages; we restrict attention to the set of languages that 
overlap with the 150 languages retained in the GitHub Innovation Graph 
(GHIG) sample.

We then construct weighted language occurrence and co-occurrence 
counts in a way that prevents highly polyglot repositories from domi
nating similarity estimates. For each repository with n distinct in-scope 
languages, we assign each language a weight of 1/n, so that the total 
language weight contributed by a repository adds to 1. For each unor
dered language pair within the repository, we assign a weight of 
2/[n(n − 1) ], so that the total pair weight also adds to 1 for repositories 
with n > 1. Aggregating these weights across repositories yields (i) 
weighted marginal counts cl for each language l, and (ii) weighted co- 
occurrence counts cl ĺ  for each pair (l, ĺ ). From these counts we 

compute cosine similarity between languages. For languages l and ĺ , 
cosine similarity is defined as: 

sl ĺ =
cl ĺ
̅̅̅̅cl

√ ̅̅̅̅̅cĺ
√

We convert similarity to distance as: dl ĺ = 1 − sl ĺ , and apply hier
archical agglomerative clustering to this distance matrix (linkage as 
implemented in our code). We obtain our baseline partition by cutting 
the dendrogram at a distance threshold chosen to yield an interpretable 
set of clusters (59 in the baseline). Each programming language is 
assigned to exactly one software bundle or co-use cluster.

Finally, we map GHIG language-level country activity into a coun
try–bundle matrix by summing over languages within each bundle. Let 
Xcl denote the number of developers in country c pushing code in lan
guage l (from GHIG). For each cluster k, we define: 

Xck =
∑

l∈k

Xcl 

This country–bundle matrix Xck is the main input to our construction 
of ECIsoftware below. In the Supplementary Information (S1, S3, S4), we 
present three alternative operationalizations of ECIsoftware, based on 
individual languages, theoretical clusters of languages derived from the 
computer science literature, and topics (user tags of project content).

We estimate the Economic Complexity Index (ECI) using the stan
dard technique introduced by (Hidalgo and Hausmann, 2009). Let Xck be 
a matrix counting the number of developers with an IP in country c 
pushing code to GitHub in software bundle k. We use Xck to derive the 
matrix of specialization or revealed comparative advantage Rck as: 

Rck =
XckX
XcXk

,

where omitted indexes have been added over (e.g. Xc =
∑

kXck). We 
then binarize the matrix Rck to generate the matrix Mck = 1 if Rck ≥ 1 or 
0 otherwise. Finally, we let the economic complexity index of a country c 
(ECIc) and the software bundle complexity index of an activity k (PCIk) 
be defined as the steady state of the map: 

ECIc =
1

Mc

∑

k
MckPCIk 

PCIk =
1

Mk

∑

c
MckECIc 

As is customary, we normalize ECI and PCI values by subtracting 
their respective mean and dividing them by their standard deviation.

There are several interpretations of ECI. In the context of a supply 
side production function, it is a method to recover an economy's capa
bilities from a matrix of geographic specialization (Hidalgo and Stoj
koski, 2025). ECI is also a spectral-clustering method that identifies 
whether an economy belongs to the high- or low-capability cluster, by 
assigning a number to each economy and to each activity that minimizes 
the distance between the number assigned to each economy and the 
numbers assigned to each activity (Bottai et al., 2024; Mealy et al., 2019; 
Servedio et al., 2024). That is, it provides an optimal one-factor split of 
the specialization matrix. From an intuitive perspective, the capability 
interpretation of economic complexity simply means that higher 
complexity economies tend to be endowed with more of the comple
mentary factors of production needed to specialize in activities.

We compare ECI indicators derived from open-source software 
(ECIsoftware) with the multidimensional economic complexity data 
compiled by (Stojkoski et al., 2023b), which uses trade data from the 
Observatory of Economic Complexity (oec.world), patent data from the 
World Intellectual Property Organization's International Patent System, 
and research publication data from SCImago Journal & Country Rank 
portal. These datasets are described in detail in section S5 of the Sup
plementary information.

1 GitHub Innovation Graph https://github.com/github/innovationgraph
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We explore the ability of ECIsoftware to complement traditional eco
nomic complexity measures in explaining international variation in GDP 
per capita, income inequality, and emissions. All macroeconomic in
dicators are derived from the Databank of The World Bank. We use 
simple cross-sectional Ordinary Least Squares (OLS) models, based on 
around 90 observations, since the relatively short coverage of the GHIG 
data (four years) limits our analysis to controlled correlation tests.

We test the principle of relatedness following the approach intro
duced in the product space (Hidalgo et al., 2007), which starts from the 
same specialization matrix (M) we used to derive measures of economic 
complexity. Formally, we define the proximity between two software 
bundles k and k’ as the minimum of the two conditional probabilities 
that a country specialized in one is also specialized in the other: 

ϕkḱ =

∑

c
MckMcḱ

max(Mk,Mḱ )

And define the relatedness between a country c and a software 
bundle k as: 

ωck =

∑

ḱ
Mcḱ ϕkkʹ

ϕk 

Where again, missing indices have been added over (e.g. ϕk =
∑

ḱ ϕkkʹ).
To assess whether countries are more likely to enter software bundles 

related to their existing portfolio of open-source software specializa
tions, we run linear probability models with country and language- 
cluster fixed effects. We estimate relatedness using 2020 data and say 
that a country enters a software bundle if they were not specialized in 
that software bundle (RCA < 1) in 2020 and 2021 and then gained 

comparative advantage (RCA ≥1) in 2022 and 2023 (e.g. Mck =

{0,0,1,1} for the years 2020 to 2023). Our models predict entry as a 
function of relatedness and software bundle ubiquity.

4. Results

4.1. Software and economic complexity

We begin our analysis by comparing our estimate of economic 
complexity based on the geography of programming languages clusters 
(ECIsoftware), with published estimates of economic complexity based on 
physical product exports (ECItrade), patents (ECItechnology), and research 
publications (ECIresearch) (Stojkoski et al., 2023b).

Fig. 1A compares four specialization matrices (M) where countries 
are sorted by diversity (number of products, software bundles they 
specialize in, etc.) and columns are sorted by ubiquity (number of 
countries specialized in each software bundle, product, etc.). Much like 
the specialization matrices for trade, patents, and research papers, the 
country-software bundle matrix exhibits a nested structure (Bustos et al., 
2012; Mariani et al., 2019), meaning that low diversity economies tend 
to specialize in a subset of ubiquitous activities found in more diverse 
economies.

Fig. 1B shows a map of ECIsoftware-based ranking of countries con
structed from the country-software bundle matrix and Fig. 1C compares 
ECIsoftware with the three other ECI measures, showing that the geogra
phy of software complexity is different from that expressed in data on 
products, patents, and research publications. For instance, Russia (RUS), 
a well-known natural resource exporter with a low ECItrade score (0.112 
on a normalized [− 1,1] scale), scores much higher in ECIsoftware (0.872 

Fig. 1. A Specialization matrices for countries and software bundles, products, patents, and research papers. B Geographic distribution of software economic 
complexity (ECIsoftware). C Comparison between ECIsoftware and ECItrade, ECItechnology, and ECIresearch respectively (R2 = 0.576, p-value <0.001, R2 = 0.620, p-value 
<0.001 and R2 = 0.346, p-value <0.001). For visualization purposes, ECI values are normalized to a scale of [− 1,1]. All ECI measures presented above are calculated 
using 2020 data only.
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on a normalized [− 1,1] scale). Similarly, India (IND) scores much higher 
in ECIsoftware (0.606) than in ECIresearch (− 0.633). The contrast between 
software and the other dimensions is highlighted by cases such as 
Indonesia (IDN) and Pakistan (PAK), which rank relatively high in 
ECIsoftware (0.872 and 0.225) despite scoring much lower in the other ECI 
measures. Section S6 of the Supplementary information presents a table 
comparing the values of ECIsoftware, ECItrade, ECItechnology, and ECIresearch 

for all countries in our sample.
Next, we explore whether ECIsoftware complements other measures of 

economic complexity in explaining international variation in GDP per 
capita, income inequality, and emissions. Descriptive statistics for the 
key variables are presented in section S7 of the Supplementary 
information.

Table 1 shows that the correlation between ECIsoftware and GDP per 
capita remains strong after controlling for other estimates of economic 
complexity. In fact, ECIsoftware works out to be as good as ECItrade at 
explaining international variations in GDP per capita in the complete 
model (column 8). This validates ECIsoftware as a complementary indi
cator by showing that there is information about international variations 
in GDP per capita contained in ECIsoftware that is not redundant with the 
information captured by the other ECIs. Moreover, the robustness of 
results across different model specifications suggests ECIsoftware is a 
reliable and consistent predictor. We also note that in this model ECItrade 

remains statistically significant across specifications, but ECItechnology 

and ECIsoftware lose their significance in the full models, suggesting that 
the information about international variations in GDP per capita carried 
by them is redundant with the information available in ECIsoftware and 
ECItrade.

Economic complexity indicators often show patterns of spatial clus
tering, as illustrated in Fig. 1A. Moran's I confirms spatial autocorrela
tion (global Moran's I = 0.483, p < 0.01), suggesting that countries with 
similar ECIsoftware values are geographically proximate, deviating 
significantly from a random distribution (Salinas, 2021). To address 
potential endogeneity issues and illustrate the robustness of our results, 
we provide instrumental variable (IV) regressions, following the iden
tification strategy in Stojkoski et al. (2023b). Detailed explanation and 
all the related regression results can be found in section S8 of the Sup
plementary information. The IV regressions in models (2) and (10) of 
Table 1 show results comparable to our baseline estimations.

Next, we look at the ability of ECIsoftware to explain international 
variations in income inequality (Table 2). Since official data on income 
inequality are infrequently published, and Gini coefficients vary slowly 
over time, we use the average Gini coefficient from the 2020–2022 
period. Despite the more limited sample, we find the same negative and 
significant relationship between income inequality and ECIsoftware. In 
fact, ECIsoftware remains strong, negative, and significant across all 
specifications. We also find ECIresearch remains significant, albeit with a 

positive coefficient.
Finally, we look at the intensity of greenhouse gas emissions (emis

sions per unit of GDP per capita) (Table 3). This is a particularly inter
esting outcome for ECIsoftware because compared to the physical 
economy, software and information technologies are expected to be a 
less carbon-intensive way to generate GDP (Ciuriak and Ptashkina, 
2020; Haberl et al., 2020; Hubacek et al., 2021; Romero and Gramkow, 
2021; Stojkoski et al., 2023a; Wang and Zhang, 2021; Wiedenhofer 
et al., 2020).

Our results suggest that software complexity is negatively associated 
with emissions per unit of GDP in simpler specifications. However, in 
full models that account for multiple dimensions of complexity, this 
effect becomes statistically insignificant. This pattern indicates that 
ECIsoftware and ECIresearch may share overlapping explanatory power. The 
variance inflation factor (VIF) analysis (section S14) suggests some de
gree of collinearity between software and research complexity. While 
economies with high software complexity tend to have high research 
complexity (their individual effects on emissions seem to operate 
through distinct mechanisms, as evidenced by a non-significant inter
action term we tested1. 0 separately). One interpretation of these find
ings is that ECIresearch absorbs part of the explanatory power of ECIsoftware 

in predicting emissions, since research-driven economies may be more 
likely to invest in low-carbon technologies and knowledge-intensive, 
low-emission industries.

Correlating ECIsoftware with income inequality and emissions in
tensity allows us to test the Kuznets hypotheses. In section S9 of the 
Supplementary information, we present regressions including a squared 
term for GDP per capita. The results support the Kuznets hypothesis for 
income inequality, indicating an inverted U-shaped relationship, but 
show little evidence of such a pattern for emissions intensity.

4.2. Related diversification in open-source software

Having validated ECIsoftware as a complementary measure of eco
nomic complexity, we now explore whether changes in the software 
specialization of countries is subject to the principle of relatedness: the 
notion that economies are more likely to enter—and less likely to 
exit—related activities (Autant-Bernard, 2001; Guevara et al., 2016; 
Hidalgo et al., 2018, 2007; Jaffe, 1986; Neffke et al., 2011; Neffke and 
Henning, 2013).

Table 4 present our linear probability models predicting entry events 
as a function of relatedness and the ubiquity of a software bundle or 
language cluster. We also include country and bundle fixed effects and 
employ clustered standard errors by country to account for within- 
country correlations over time, ensuring robust and reliable standard 
errors in our regression models. Estimations based on logit models can 
be found in section S10 of the Supplementary information.

Table 1 
ECIsoftware and GDP per capita (2020) in a multidimensional setting. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

GDP per capita (log)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ECIsoftware 0.343*** 0.358*** 0.180*** 0.192*** 0.338*** 0.125*** 0.169***
(0.025) (0.026) (0.037) (0.037) (0.037) (0.044) (0.043)

ECItrade 0.337*** 0.222*** 0.190*** 0.177***
(0.028) (0.037) (0.046) (0.045)

ECItechnology 0.266*** 0.156*** 0.063* 0.051
(0.021) (0.029) (0.035) (0.036)

ECIresearch 0.140*** 0.006 0.022 0.013
(0.025) (0.028) (0.026) (0.025)

Population (ln) − 0.146*** − 0.150*** − 0.079*** − 0.103*** − 0.066*** − 0.117*** − 0.133*** − 0.145*** − 0.122*** − 0.120***
(0.017) (0.017) (0.015) (0.019) (0.020) (0.014) (0.017) (0.019) (0.016) (0.016)

Natural resources (ln) 0.015 0.018 0.023* − 0.018 − 0.037** 0.034*** 0.007 0.015 0.028** 0.031**
(0.012) (0.013) (0.013) (0.012) (0.018) (0.012) (0.011) (0.012) (0.014) (0.014)

Instrumental variable No Yes No No No No No No No Yes
Observations 93 93 93 93 93 93 93 93 93 93
R2 0.648 0.647 0.693 0.654 0.374 0.753 0.711 0.648 0.764 0.762
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Table 4 suggests that open-source software specialization follows the 
principle of relatedness, with countries being more likely to specialize in 
software bundles that are related to those they are currently specialized 
in. The negative and significant effect of bundle ubiquity indicates that 
countries are less likely to enter common language bundles, which is 
reasonable since many countries already have comparative advantage in 
them. While relatedness in the case of OSS behaves similarly across both 
simpler and more complex models, its explanatory power remains 

limited, with a baseline R2 of about 1%. We suggest a few reasons why 
this is still a significant finding. First, entry is a rare event: we observe 42 
entrances vs 722 non-entrances. Second, the R-squared values of the 
models with country and language-cluster fixed effects are much higher 
(27%) and the estimate of the effect of relatedness on entry is about 
three times as large as in the baseline model (0.154 vs 0.429). Third, 
similar levels of explanatory power are observed in other papers testing 
the principle of relatedness (for example see Balland et al., 2018; and for 

Table 2 
ECIsoftware and income inequality in a multidimensional setting. ECI estimates are based on 2020 data, while the dependent variable is the average Gini coefficient 
between 2020 and 2022. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

Gini coefficient

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ECIsoftware − 1.038*** − 1.054*** − 0.905** − 1.033*** − 0.981*** − 0.920** − 0.966**
(0.353) (0.413) (0.358) (0.409) (0.349) (0.381) (0.416)

ECItrade − 0.679** − 0.500* − 0.359 − 0.354
(0.289) (0.275) (0.293) (0.294)

ECItechnology − 0.219 − 0.013 0.061 0.069
(0.253) (0.288) (0.285) (0.281)

ECIresearch 0.419** 0.387** 0.332** 0.331**
(0.158) (0.144) (0.153) (0.154)

GDP per capita (ln) 0.905*** 0.918** 0.612* 0.262 − 0.330 1.219*** 0.914*** 0.521 0.759** 0.787**
(0.350) (0.389) (0.322) (0.324) (0.249) (0.357) (0.350) (0.344) (0.343) (0.367)

Population (ln) 0.455*** 0.460*** 0.222** 0.177* 0.090 0.481*** 0.456*** 0.401*** 0.422*** 0.435***
(0.129) (0.146) (0.088) (0.091) (0.078) (0.127) (0.125) (0.116) (0.113) (0.128)

Natural resources (ln) 0.250** 0.248** 0.286** 0.354*** 0.400*** 0.224* 0.251** 0.313*** 0.279** 0.274**
(0.109) (0.112) (0.117) (0.112) (0.092) (0.117) (0.113) (0.097) (0.117) (0.121)

Instrumental variable No Yes No No No No No No No Yes
Observations 48 48 48 48 48 48 48 48 48 48
R2 0.409 0.409 0.357 0.299 0.376 0.445 0.409 0.484 0.499 0.499

Table 3 
ECIsoftware and greenhouse gas emission intensity (2020) in a multidimensional setting. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05, 
***p < 0.01.

Emission per GDP (log)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ECIsoftware − 0.115*** − 0.112** − 0.118*** − 0.106** − 0.079* − 0.072 − 0.059
(0.041) (0.043) (0.043) (0.047) (0.044) (0.050) (0.052)

ECItrade − 0.021 0.012 0.001 − 0.001
(0.040) (0.040) (0.042) (0.042)

ECItechnology − 0.052 − 0.016 − 0.014 − 0.017
(0.033) (0.038) (0.039) (0.039)

ECIresearch − 0.064*** − 0.046** − 0.046** − 0.048**
(0.020) (0.021) (0.021) (0.022)

GDP per capita (ln) 0.011 0.009 − 0.051 − 0.020 − 0.031 0.004 0.019 0.013 0.019 0.016
(0.027) (0.028) (0.032) (0.030) (0.024) (0.034) (0.029) (0.026) (0.034) (0.034)

Population (ln) 0.031* 0.030 − 0.005 0.006 − 0.002 0.030 0.032* 0.024 0.025 0.022
(0.018) (0.018) (0.014) (0.016) (0.013) (0.018) (0.018) (0.018) (0.018) (0.018)

Natural resources (ln) 0.054*** 0.055*** 0.066*** 0.067*** 0.062*** 0.056*** 0.055*** 0.053*** 0.054*** 0.055***
(0.013) (0.014) (0.015) (0.012) (0.012) (0.014) (0.013) (0.013) (0.015) (0.015)

Instrumental variable No Yes No No No No No No No Yes
Observations 92 92 92 92 92 92 92 92 92 92
R2 0.553 0.553 0.506 0.521 0.557 0.553 0.554 0.576 0.577 0.577

Table 4 
Entry models on countries gaining revealed comparative advantage (RCA ≥ 1) in software bundles (2020− 2023). Standard errors are clustered at the country level. 
Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

Entry

(1) (2) (3) (4) (5) (6) (7)

Relatedness density 0.154** 0.349** 0.282*** 0.429** 0.171** 0.328**
(0.072) (0.133) (0.097) (0.174) (0.079) (0.134)

Ubiquity − 0.006 − 0.012 − 0.012
(0.009) (0.010) (0.010)

Country FE No Yes No Yes No No Yes
Software bundle FE No No Yes Yes No No No
Observations 764 764 764 764 764 764 764
R2 0.013 0.187 0.118 0.271 0.001 0.016 0.189
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a general overview see Li and Neffke, 2024). Interpreting the effect size 
also indicates the significance of relatedness as a correlate of entry. The 
mean of the relatedness measure in the full sample is 0.326, with a 
standard deviation of 0.168. Moving from the mean to one standard 
deviation above it is associated with a 7.2–percentage-point increase in 
the probability of entry, nearly double the base rate of entry of 5–6% to 
about 12–13%.

Fig. 2 shows the network of related software bundles following the 
visualization approach of (Hidalgo et al., 2007). Fig. 2A highlights a few 
example software bundles, with labels listing all programming lan
guages within each. We then focus on the entry and exit patterns of three 
countries on Fig. 2B. In each case, entries occur into bundles that are 
adjacent to existing specializations, while exits tend to occur out of more 
weakly connected bundles.

Fig. 2B highlights contrasting dynamics in countries' software 
capability portfolios, measured as entries and exits in revealed 
comparative advantage (RCA) across software bundles. China exhibits 
multiple entries, consistent with an expanding and diversifying software 
profile: it is increasingly likely to develop comparative advantage in 
additional capability bundles, suggesting active broadening of its OSS 
specializations. Great Britain shows comparatively few transitions, 
indicating a more stable specialization structure over the period—its 
portfolio appears to evolve gradually, with limited reallocation across 
bundles. Russia, in contrast, displays several exits, consistent with a 
contraction or relative weakening of specialization in a set of capability 
bundles, likely related to large scale emigration of software developers 
in the wake of the 2022 invasion of Ukraine (Wachs, 2023).

We then explore the principle of relatedness in the context of exits 
(Table 5). We consider exits as countries that were specialized in a 
software bundle (RCA ≥ 1) in 2020 and 2021 and later lost their 
comparative advantage (RCA < 1) in 2022 and 2023 (e.g. Mcl =

{1,1,0,0} for the years going from 2020 to 2023). The negative and 
significant effect of relatedness across both simpler and more complex 

models indicates that countries are less likely to lose their advantage in 
software bundles that are related to those they currently specialize in. 
Again, the effects of relatedness are overall mild (R2 < 3% on the 
baseline model) but are robust to the inclusion of country and bundle 
fixed-effects, showing that they go beyond what can explained based on 
the statistic characteristics of a country or bundle.

4.3. Robustness checks and alternative approaches

We verify the consistency of our findings through multiple alterna
tive specifications and modeling strategies. First, we confirm that the 
main results hold when varying RCA thresholds or applying Tobit re
gressions to account for the nature of the dependent variables (see 
section S10 and S11 in the Supplementary information). We also verify 
that restricting the sample to countries with fully available macroeco
nomic data does not alter the significance or direction of our co
efficients, indicating that sample selection does not drive our 
conclusions (see section S13 in the Supplementary information). 
Further, to address potential statistical concerns, we check for multi
collinearity through VIF analyses and remove mathematical de
pendencies from key variables, ensuring that the variables used are valid 
and adequately capture different dimensions of complexity (see section 
S14 in the Supplementary information for more details).

Second, we go back to our alternative definitions of ECIsoftware to 
show that our conclusions hold when we define software complexity on 
different basis, either by grouping languages into theoretical clusters (e. 
g., web-oriented or system-level languages; see S3) or by using a mea
sure based on topics (S4), or simply by consider languages themselves 
(S1). We find that even when we change the unit of observation to 
topics, ECIsoftware remains positively correlated with GDP per capita and 
negatively correlated with income inequality.

Our findings on the relationship between ECIsoftware and macroeco
nomic indicators are based on cross-sectional regressions. In section S15 

Fig. 2. (A) Network representation of software bundle relatedness. (B) Changes in revealed comparative advantage (RCA) in programming languages clusters 
(2020–2023) in China, Great Britain, and Russia. Dark blue nodes indicate specialization in 2020–2021 (RCA ≥1), while yellow nodes indicate subsequent 
(2022− 2023) specialization in software bundles, and red nodes indicate exits. Countries are more likely to specialize in new software bundles adjacent to their 
previous specializations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the Supplementary information, we replicate GDP growth models in 
the style of Hidalgo and Hausmann (2009). However, this is not rec
ommended due to the limited time span of available data (2020–2023), 
since measures of complexity are structural measures that are connected 
to long term growth (so we should not expect significance in short time 
periods dominated by other dynamics, such as the covid bounce-back in 
this case). As expected, we find that neither ECIsoftware nor ECItrade 

significantly predicts GDP growth. Structural measures such as ECIsoft

ware tend to be stable over time, whereas short-term growth outcomes 
are more volatile. Supporting this, we find that ECIsoftware remains 
highly stable across years, with correlations exceeding 0.92 (see section 
S16 of the Supplementary information), suggesting its predictive power 
may become more apparent over longer time horizons. Additionally, we 
provide an extensive explanation of our instrumental variable approach, 
including extended models and tests in section S8 of the Supplementary 
information. However, testing for potential endogeneity using in
struments for other complexity measures—or between complexity 
measures themselves, such as ECIsoftware and ECItechnology—was beyond 
the scope of this paper. Together, these tests demonstrate that our main 
results are stable and robust, even when we account for alternative 
definitions, model specifications, and potential sources of bias.

5. Discussion

Here we expanded the study of economic complexity to include the 
software sector by leveraging recently published data on the geography 
of open-source software (OSS). By relying on the IP addresses of the 
developers contributing to OSS projects, instead of on self-reported lo
cations (which can suffer from reporting bias (Hecht et al., 2011)), we 
were able to construct estimates of the geographic distribution of open- 
source software language knowledge for 100+ programming languages 
and use them to create internationally comparable estimates of eco
nomic complexity for the software sector and to study OSS's diffusion in 
the context of the principle of relatedness. Our study provides a cross- 
country measure of software economic complexity and demonstrates it 
complements well-established ECI metrics based on trade, patents and 
research.

Building on prior studies linking software specialization to broader 
skill formation and productivity gains (Brynjolfsson and Hitt, 2003; 
Nagle, 2019, 2018; Wright et al., 2023), our results indicate that 
countries with higher software-based economic complexity may be 
better equipped to generate inclusive growth—thereby reducing 
inequality. This aligns with research showing that knowledge-intensive 
economies can create wider opportunities for high-skilled labor, miti
gating income disparities (Hartmann et al., 2017). Although not 
consistently significant across all models, the observed negative asso
ciation between software complexity and emissions aligns directionally 
with prior evidence that digitally driven economies may reduce their 
reliance on resource-intensive activities (Haberl et al., 2020; Stojkoski 
et al., 2024). These points suggest that software complexity could serve 
as a policy-relevant indicator for steering economies towards less envi
ronmentally taxing activities. In sum, our study contributes to the 

literature by offering both an empirical measure of software capabilities 
and an interpretation, consistent with earlier scholarship, of how these 
capabilities might shape pathways of inclusive and sustainable growth.

We also found that ECIsoftware complements other measures of eco
nomic complexity when explaining macro-outcomes. One plausible 
interpretation of this complementarity is that the overlap between these 
different activities is not exhaustive, and hence, the differences among 
them are informative. Patent data includes many non-software activ
ities, such as patents in biotech or the life sciences. Similarly, research 
publication data also includes many non-software related sectors, such 
as publications in history or philosophy. Also, open-source software data 
may provide some additional granularity that might not be available in 
the other data sources. For example, OSS data involves hundreds of 
unique languages, which provide a resolution over the software sector 
that is larger than the one captured in research publication data. The 
idea that correlated measures of complexity can prove to be comple
mentary is at the core of the idea of multidimensional complexity 
(Stojkoski et al., 2023a, 2023b), which is based on the idea that infor
mation on the geography of different activities (products, patents, pa
pers, software, etc.) captures different levels of detail making them 
mutually reinforcing. In simple terms, they fill each other's “gaps.”

But what can we make of these findings? First, that economic 
complexity measures derived from OSS production do indeed correlate 
significantly with GDP, inequality, and emissions suggests that software 
complexity can suggest productive diversification directions. The liter
ature on economic development is rife with work advising economies to 
diversify towards more complex economic activities (Balland et al., 
2018; Hausmann et al., 2014; Hidalgo, 2023). High economic 
complexity activities are associated with better wages and may face less 
competition in international markets than the production of more 
ubiquitous commodities. The question that remains is whether this 
advice can translate to software. We argue that many of the unique as
pects of software make it especially attractive for specific kinds of 
diversification strategies.

Unlike physical products, software relies less on immobile factors, 
such as large manufacturing or processing plants and natural resources. 
At the same time, software outputs are highly tradable (OECD, 2023; 
Stojkoski et al., 2024) and digital products are known to be—on aver
age—of relatively high complexity compared to physical products 
(Stojkoski et al., 2024). Further, transformer models on platforms like 
Hugging Face make deep learning accessible with pre-trained models 
that require significantly fewer resources (Wolf et al., 2019). This means 
that software provides new opportunities for structural upgrading that 
are less reliant on physical factors of production and more reliant on 
efforts to attract human capital. Combined with our finding that diver
sification in software follows the principle of relatedness, policymakers 
should seek to attract experts in complex software technologies most 
related to current areas of strength.

Future research could explore how AI-driven productivity gains 
might alter the rate at which regions diversify into more sophisticated 
software niches—and whether that facilitates or hinders upward 
movement in the digital value chain.

Table 5 
Exit models on countries losing revealed comparative advantage (RCA < 1) in software bundles (2020–2023). Standard errors are clustered at the country level. 
Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

Exit

(1) (2) (3) (4) (5) (6) (7)

Relatedness density − 0.160*** − 0.405*** − 0.190*** − 0.285** − 0.223*** − 0.348***
(0.033) (0.105) (0.044) (0.116) (0.043) (0.099)

Ubiquity − 0.006 − 0.027*** − 0.018**
(0.006) (0.008) (0.009)

Country FE No Yes No Yes No No Yes
Software bundle FE No No Yes Yes No No No
Observations 1544 1544 1544 1544 1544 1544 1544
R2 0.023 0.185 0.116 0.257 0.001 0.035 0.187
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While our study suggests how to estimate, validate, and use measures 
of economic complexity based on software, it is also subject to several 
important limitations that may affect the interpretation of our results. 
First, because our data exclusively captures OSS activity on GitHub, we 
may underestimate important proprietary or closed-source capa
bilities—and overlook OSS activity on other platforms. This can lead us 
to systematically undervalue software complexity in certain economies 
(for instance, where non-GitHub or closed-source development is pre
dominant). Even OSS projects hosted outside of GitHub are also different 
on average, for example they are more likely to be academic (Trujillo 
et al., 2022). Moreover, our assumption that GitHub-based OSS 
specialization reflects broader digital skills—while supported by 
research on OSS's role in innovation— may still introduces measurement 
error. Ultimately, some countries may possess stronger sofOSStware 
capabilities than our metrics reveal, which could influence the strength 
of the observed correlations with macroeconomic outcomes.

Second, applying product-complexity methods to programming 
languages poses conceptual challenges. We treat languages as distinct 
units of analysis, a choice which offers clear interpretability but sim
plifies the complex relationships between them. For instance, languages 
may relate through complementary usage (e.g., HTML and CSS) rather 
than hierarchical supply chains, meaning the “distance” between them 
may not perfectly map onto traditional complexity notions. We explored 
alternative specifications, such as considering individual languages or 
theoretical clusters instead of bundles as the basis for the ECI calculation 
in our robustness checks (see Supplementary Information). While these 
aggregations largely confirm our results, we retain the software bundle 
approach in our main analysis for its robustness. Ultimately, path- 
dependent software diversification may follow different patterns than 
those in manufacturing, and more granular data (e.g., at the project or 
framework level) will be valuable for future work.

Nevertheless, despite these limitations, our work represents a valu
able step towards extending economic complexity analysis to the digital 
realm, offering insights into the geographic distribution of software 
capabilities and their potential impact on macroeconomic outcomes. 
Software complexity is a significant complement to trade, research, and 
technology complexity measures because it covers a specific and 
important class of capabilities; this is demonstrated by its ability to 
extend the predictive power of models of key macro-outcomes including 
growth, inequality, and emission intensity. As the digital economy 
continues to evolve, further research integrating diverse data sources 
will be crucial. Understanding how emerging technologies, particularly 
in artificial intelligence (Daniotti et al., 2025; Del Rio-Chanona et al., 
2024), may alter the nature of software capabilities and pathways for 
diversification remains a key challenge for the future.
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Valverde, S., Solé, R.V., 2015. Punctuated equilibrium in the large-scale evolution of 
programming languages. J. R. Soc. Interface 12, 20150249. https://doi.org/ 
10.1098/rsif.2015.0249.

Valverde, Sole, 2015. A cultural diffusion model for the rise and fall of programming 
languages. Hum. Biol. 87, 224. https://doi.org/10.13110/humanbiology.87.3.0224.

Wachs, J., 2023. Digital traces of brain drain: developers during the Russian invasion of 
Ukraine. EPJ Data Sci. 12. https://doi.org/10.1140/epjds/s13688-023-00389-3.

Wachs, J., Nitecki, M., Schueller, W., Polleres, A., 2022. The geography of open source 
software: evidence from GitHub. Technol. Forecast. Soc. Change 176, 121478. 
https://doi.org/10.1016/j.techfore.2022.121478.

Wang, Q., Zhang, F., 2021. The effects of trade openness on decoupling carbon emissions 
from economic growth–evidence from 182 countries. J. Clean. Prod. 279, 123838. 
https://doi.org/10.1016/j.jclepro.2020.123838.

Weber, I., Semieniuk, G., Westland, T., Liang, J., 2021. What you Exported Matters: 
Persistence in Productive Capabilities across Two Eras of Globalization (Working 
Paper No. 2021-02). University of Massachusetts, Department of Economics, 
Amherst, MA. https://doi.org/10.7275/21780201. 

Wiedenhofer, D., Virág, D., Kalt, G., Plank, B., Streeck, J., Pichler, M., Mayer, A., 
Krausmann, F., Brockway, P., Schaffartzik, A., 2020. A systematic review of the 
evidence on decoupling of GDP, resource use and GHG emissions, part I: bibliometric 
and conceptual mapping. Environ. Res. Lett. 15, 063002. https://doi.org/10.1088/ 
1748-9326/ab8429.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., 
Louf, R., Funtowicz, M., et al., 2019. Huggingface’s transformers: state-of-the-art 
natural language processing. arXiv preprint. https://doi.org/10.48550/ 
arXiv.1910.03771 arXiv:1910.03771. 

Wright, N.L., Nagle, F., Greenstein, S., 2023. Open source software and global 
entrepreneurship. Res. Policy 52, 104846. https://doi.org/10.1016/j. 
respol.2023.104846.

Zhang, Z., Chen, L., Li, J., Ding, S., 2024. Digital economy development and carbon 
emission intensity—mechanisms and evidence from 72 countries. Sci. Rep. 14, 
28459. https://doi.org/10.1038/s41598-024-78831-3.

S. Juhász et al.                                                                                                                                                                                                                                  Research Policy 55 (2026) 105422 

12 

https://doi.org/10.2139/ssrn.3427412
https://doi.org/10.2139/ssrn.3427412
https://doi.org/10.1016/j.worlddev.2020.105317
https://doi.org/10.5089/9781513571614.001
https://doi.org/10.1371/journal.pone.0182774
https://doi.org/10.1371/journal.pone.0182774
https://doi.org/10.48550/arXiv.2405.04158
http://refhub.elsevier.com/S0048-7333(26)00013-2/rf0440
http://refhub.elsevier.com/S0048-7333(26)00013-2/rf0440
https://doi.org/10.1145/3511062
https://doi.org/10.1371/journal.pone.0161633
https://doi.org/10.48550/arXiv.2310.02253
https://doi.org/10.48550/arXiv.2310.02253
https://doi.org/10.1038/s43247-023-00770-0
https://doi.org/10.1038/s43247-023-00770-0
https://doi.org/10.1038/s41467-024-49141-z
https://doi.org/10.1038/s41467-024-49141-z
https://doi.org/10.1038/srep00723
https://doi.org/10.1038/srep00723
https://doi.org/10.22617/WPS250008-2
https://doi.org/10.22617/WPS250008-2
https://doi.org/10.1140/epjds/s13688-022-00345-7
https://doi.org/10.1140/epjds/s13688-022-00345-7
https://doi.org/10.1098/rsif.2015.0249
https://doi.org/10.1098/rsif.2015.0249
https://doi.org/10.13110/humanbiology.87.3.0224
https://doi.org/10.1140/epjds/s13688-023-00389-3
https://doi.org/10.1016/j.techfore.2022.121478
https://doi.org/10.1016/j.jclepro.2020.123838
https://doi.org/10.7275/21780201
https://doi.org/10.1088/1748-9326/ab8429
https://doi.org/10.1088/1748-9326/ab8429
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.1016/j.respol.2023.104846
https://doi.org/10.1016/j.respol.2023.104846
https://doi.org/10.1038/s41598-024-78831-3

	The software complexity of nations
	1 Introduction
	2 Economic complexity and open-source software production
	2.1 Complexity, relatedness and the digital sector
	2.2 Conceptualizing software complexity
	2.3 Scope and contribution

	3 Data and the construction of economic complexity measures
	4 Results
	4.1 Software and economic complexity
	4.2 Related diversification in open-source software
	4.3 Robustness checks and alternative approaches

	5 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


