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Despite the growing importance of the digital sector, research on economic complexity and its implications
continues to rely mostly on administrative records—e.g. data on exports, patents, and employment—that have
blind spots when it comes to the digital economy. In this paper we use data on the geography of programming

I(;nirtl;‘l’linon languages used in open-source software to extend economic complexity ideas to the digital economy. We esti-
Relatedness mate a country's software economic complexity index (ECI®™2) and show that it complements the ability of

measures of complexity based on trade, patents, and research to account for international differences in GDP per
capita, income inequality, and emissions. We also show that open-source software follows the principle of
relatedness, meaning that a country's entries and exits in programming languages are partly explained by its
current pattern of specialization. Together, these findings help extend economic complexity ideas and their

policy implications to the digital economy.

1. Introduction

The study of economic complexity has predominantly relied on
administrative records, such as international trade data (Hidalgo et al.,
2007; Hidalgo and Hausmann, 2009), patent filings (Balland and Rigby,
2017; Kogler et al., 2013), and employment statistics (Jara-Figueroa
et al., 2018; Neffke and Henning, 2013), that while valuable, struggle to
capture the importance of the digital economy. This “dark matter”
(Greenstein and Nagle, 2014) is important because software capa-
bilities—which are human capital intensive—represent a mobile and
transmissible source of economic complexity that is relevant for policy
efforts focused on increasing the complexity of economies (Hidalgo,
2023). Yet, despite this evident need, internationally comparable esti-
mates of software-related economic complexity remain limited.

Economic complexity refers to the structure and breadth of produc-
tive capabilities embedded or implicit in an economy's industries,
products, or workforce (Hidalgo and Hausmann, 2009; Hausmann et al.,
2014; Hidalgo, 2021). Methodologically, its modeled using two key
concepts: the economic complexity index (ECI) and the idea of relatedness.

The economic complexity index (ECI) provides a mean to estimate
the combined presence of an economy's capabilities without having to
define them (Hidalgo and Stojkoski, 2025). It is often used to anticipate
macroeconomic outcomes, such as long-term economic growth (Hidalgo
and Hausmann, 2009, Domini, 2022, Chéavez et al., 2017, Stojkoski
et al., 2023a, 2023b), since economies endowed with diverse capabil-
ities can recombine them into more complex and higher value added
products (Hidalgo and Stojkoski, 2025). Relatedness asserts that regions
and countries diversify into new activities when these share capabilities
with those that an economy is currently specialized in (Hidalgo et al.,
2007; Neffke et al., 2011; Neffke and Henning, 2013; Hausmann et al.,
2014; Hidalgo et al., 2018; Hidalgo, 2021; Balland et al., 2022). For
instance, a country with expertise in data analytics and high-
performance computing is more likely to expand into fields that build
upon that foundation, such as artificial intelligence, than countries
lacking these complementary specializations.

While economic complexity methods have expanded to include
trade, patents, employment, and research publication data, their appli-
cation to the digital sector remains limited. Software capabilities are
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only partially visible in these metrics and digital capabilities are insuf-
ficiently expressed in physical product data (Rahmati et al., 2021;
Stojkoski et al., 2024). Code crosses borders through cloud services,
downloads, and remote platforms rather than through customs, and
digital firms often create local subsidiaries that obscure trade flows even
further. Moreover, service trade categories remain notoriously broad
(including groupings such as “computer and information services™); and
patents record protectable inventions rather than the open knowledge
embedded in everyday programming.

Yet, these data limitations are at odds with the growing importance
of the digital economy and the role played by open-source software
(0SS). IT technologies and software development are predictors of firm
productivity, innovation capacity, and economic growth (Brynjolfsson
and Hitt, 2003, 1998; Rahmati et al., 2021). Within this sector, OSS li-
braries have become essential building blocks (Eghbal, 2020), with OSS
participation predicting higher entrepreneurial activity (Wright et al.,
2023) and value-added productivity in ecosystems with complementary
capabilities (Nagle, 2019, 2018; Rock, 2019). In the US alone, annual
investment in OSS was estimated to be about $38bn in 2019 (Korkmaz
et al., 2024), and government subsidies to OSS generate large returns
(Gortmaker, 2025). As it is known for complex and innovative activities
(Audretsch and Feldman, 1996; Balland et al., 2020), OSS development
is human capital-intensive, geographically concentrated (Wachs et al.,
2022), and open to international collaboration (Goldbeck, 2025). This
suggests software capabilities may follow spatial patterns distinct from
traditional complexity metrics.

Taken together, the growing importance of the digital economy, the
key role that open-source software plays in it, and the remaining open
questions about the geography of software capabilities, represent a
critical gap in economic complexity research. Moreover, it remains un-
clear whether the “complexity” of the digital economy substitutes or
complements traditional complexity metrics. In this paper, we address
these gaps by exploring the question: Do economic complexity measures
based on the geography of open-source software production correlate with
macroeconomic indicators like GDP per capita, inequality, and emissions,
complementing complexity measures based on trade, research, and patents?

In this study, we use data on the geographic distribution of OSS
projects hosted on GitHub to generate a national-level software eco-
nomic complexity index (ECI**™2®). Our main specification constructs
ECI®f™® from clusters of programming languages frequently used
together in repositories. The cluster-based measure summarizes the di-
versity and sophistication of a country's software capabilities in a way
that is comparable across countries and aligned with how developers
combine technologies in practice. We then link ECI**®™2™ to GDP per
capita, inequality measured through the Gini coefficient, and CO2-per-
GDP from the World Bank and compare its explanatory power with
complexity indices based on trade, patents, and research. Our analyses
show that ECF™¢ captures a digital capability dimension that while
correlated with trade-, patent- and research-based complexity measures
(R? ~ 0.5-0.6) adds significant explanatory power in cross-country
models of GDP per capita and income inequality. In addition, we show
that countries' entries and exits in programming languages follows the
principle of relatedness, confirming that digital diversification mirrors
path-dependence observed in physical industries.

By incorporating software into the complexity toolbox, we provide
evidence that digital specialization is reshaping economic structures and
creating new pathways for structural transformation. From a policy
perspective, the accessibility and granularity of open-source software
data offers a cost-effective and reproducible means to track and poten-
tially enhance economic complexity research, providing policymakers a
new route to design interventions focused on fostering digital capabil-
ities. Unlike traditional development strategies focused on infrastruc-
ture and physical capital, fostering digital complexity relies more on
human capital development and knowledge spillovers within software
ecosystems (Apostol and Hernandez-Rodriguez, 2024; Balland et al.,
2022; Brynjolfsson and Saunders, 2010; Korkmaz et al., 2024), and thus,
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represents a new frontier for applied and fundamental work in economic
geography and economic complexity research.

2. Economic complexity and open-source software production
2.1. Complexity, relatedness and the digital sector

Economic complexity involves the use of fine-grained data on ac-
tivities to capture economic structure and shifts in specialization pat-
terns (Balland et al.,, 2022; Domini, 2022; Guevara et al., 2016;
Hausmann et al., 2014; Hidalgo et al., 2018, 2007; Hidalgo, 2021; Hi-
dalgo and Hausmann, 2009; Hidalgo and Stojkoski, 2025; Poncet and de
Waldemar, 2015; Stojkoski et al., 2023b). These structural measures are
used to explain variation in macroeconomic outcomes, such as economic
growth (Pérez-Balsalobre et al., 2019; Chavez et al., 2017; Domini,
2022; Hausmann et al., 2014; Hidalgo and Hausmann, 2009; Koch,
2021; Poncet and de Waldemar, 2013; Stojkoski et al., 2016, 2023b;
Weber et al., 2021), income and gender inequality (Bandeira Morais
et al., 2018; Ben Saad and Assoumou-Ella, 2019; Chu and Hoang, 2020;
Hartmann et al., 2017; Lee and Vu, 2019; Sbardella et al., 2017), and
emissions (Can and Gozgor, 2017; Dogan et al., 2021; Lapatinas et al.,
2019; Mealy and Teytelboym, 2020; Romero and Gramkow, 2021). In
the last fifteen years, these methods grew into popular indicators for
international and regional development policy (Balland et al., 2022;
Hidalgo, 2023, 2021) together with methods designed to explain shifts
in specialization, building on the principle of relatedness (Hidalgo et al.,
2018): the notion that economies diversify by entering activities that
reuse some of their existing capabilities. Relatedness metrics highlight
path dependencies and help predict which industries, products, research
activities, or technologies are likely to grow or decline in a country, city,
or region (Alabdulkareem et al., 2018; Apostol and Hernandez-Rodri-
guez, 2024; Boschma et al., 2013; Guevara et al., 2016; Hidalgo et al.,
2018, 2007; Jara-Figueroa et al., 2018; Kogler et al., 2013; Li and
Neffke, 2024; Neffke et al., 2011; Neffke and Henning, 2013; Poncet and
de Waldemar, 2015). Complexity metrics then provide a comparative
estimate of the value of a region's specialization pattern.

But while economic complexity methods enjoy significant adoption
in policy and academia, their application is still limited by the avail-
ability of fine-grained data. Like the proverbial man looking for his keys
under the lamppost, economic complexity efforts thus far have focused
on international trade statistics (Hidalgo et al., 2007; Hidalgo and
Hausmann, 2009), manufacturing, payroll, firm registry, and employ-
ment data for industries (Chavez et al., 2017; Fritz and Manduca, 2021;
Gao and Zhou, 2018; Hidalgo, 2021; Jara-Figueroa et al., 2018; Neffke
et al, 2011; Neffke and Henning, 2013), data on occupations
(Alabdulkareem et al., 2018; Farinha et al., 2019; Jara-Figueroa et al.,
2018; Muneepeerakul et al., 2013), patents (Balland and Rigby, 2017;
Kogler et al., 2013), and research papers (Chinazzi et al., 2019; Guevara
et al., 2016; Stojkoski et al., 2023b). This expansion recently led to the
introduction of multidimensional economic complexity (Stojkoski et al.,
2023b), the notion that metrics of complexity derived from multiple
datasets complement each other to explain macroeconomic outcomes (e.
g. trade and patent complexity estimates explain economic growth
better together than alone). But with the exception of some recent work
on digital trade (Stojkoski et al., 2023a), digital infrastructure (Liang
and Tan, 2024), and software components in physical products (Rahmati
et al., 2021), the multidimensional expansion of economic complexity is
yet to fully reach the digital sector, despite work highlighting the
importance of software outside economic complexity research (Shapiro
and Varian, 1999; Chattergoon and Kerr, 2022).

For instance Aum and Shin (2024) emphasize the critical role played
by software in modern economies, highlighting how it substitutes labor
with high elasticity. Branstetter et al. (2019) find that firms, not only
technology firms, with greater software intensity measured by patenting
activity achieve greater returns to R&D. These results suggest that data
on software activity can predict macro level growth. Moreover, the
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growth of the digital economy and its integration into the offline
economy is thought to reduce greenhouse emissions (Liu et al., 2023;
Zhang et al., 2024). The impact of digitalization and software produc-
tion on inequality outcomes is less clear, as unequal access and winner
take all dynamics may compound inequality (Arthur, 1994), while
growth in access to information and employment opportunities may
shrink it (Tian et al., 2025).

In practice the question of how software complexity influences
macroeconomic outcomes like growth, inequality and emissions, re-
mains unclear because economic complexity research still suffers from a
“digital blind-spot”. This is due to the lack of datasets that capture a
detailed view of software-related activity (Balland and Rigby, 2017;
Chavez et al., 2017; Guevara et al., 2016; Stojkoski et al., 2023b). This
gap hinders our ability to apply the insights derived from other datasets
to digital industries, making it difficult to—for instance—forecast which
digital diversification efforts are more likely to succeed or estimate how
software capabilities evolve and cluster over time.

There is in fact some evidence hinting to the notion that data used
traditionally to study economic complexity can miss digital capabilities.
Economic complexity estimates derived from trade data (Hidalgo and
Hausmann, 2009) may not align well with software, which crosses
borders through cloud services, downloads, or remote platforms rather
than through standard customs channels (Corrado et al., 2005; Stojkoski
et al., 2023a). As a result, trade data may systematically underestimate
digital activity. Service trade data should be an alternative, but it is
notoriously coarse, with categories such as “Computer and Information
Services”, which are too broad to distinguish basic IT outsourcing from
advanced software development. Moreover, software production is
often carried out through subsidiaries, obscuring the real geography of
capabilities. Furthermore, open-source projects and collaborative code
repositories do not appear as discrete tradeable goods (Greenstein and
Nagle, 2014; Korkmaz et al., 2024) since many software products are
monetized via subscriptions, advertising, or freemium models, making
them hard to track in conventional trade records. When it comes to
employment statistics, software is also represented through coarse in-
dustry categories, such as “Software Publishing,” and coarse occupa-
tions, such us “Software developers” which provide no information
about the programming languages used or the applications created by
this segment of the labor force.

In short, it is difficult to describe an economy's digital capabilities
using traditional data sources. This limits our understanding of the path-
dependent dynamics and sophistication of digital economies. Countries
or regions that excel in certain digital fields may not show up clearly in
traditional complexity data, undercutting our ability to understand
related diversification in their context. More generally, we cannot tell
how productive capabilities in this sector relate to important macro-
economic outcomes such as income, growth, inequality and the carbon
intensity of economies. Digital or software complexity may complement
or substitute classic economic complexity estimates, which are signifi-
cant predictors of these outcomes. But to understand whether these are
complements or substitutes, we need to test these ideas empirically.

2.2. Conceptualizing software complexity

Insofar we have argued that data used to commonly estimate eco-
nomic complexity fails to capture information about an economy's dig-
ital capabilities. But what data can we use to approximate capabilities
implicit in the digital economy? Here, we follow a two-pronged
approach, building on data on programming languages and software
bundles.

Programming languages provide an unusually fine-grained and
consistent trace of digital production. A language is not only a syntax but
a technical paradigm formed by an ecosystem of tools, libraries, and
conventions that shapes how software is built and maintained (Valverde
and Solé, 2015a,b). Language adoption indicates embedded knowledge
and skills: familiarity with syntax, common practices, and domain-
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focused applications (e.g., Al, cybersecurity, or high-performance
computing).

Languages are also meaningful categories because their ecosystems
exhibit strong social and market dynamics. The value of adopting a
language often depends on the availability of complementary
assets—libraries, frameworks, documentation, and experienced devel-
opers—so technology choices reflect local talent pools and ecosystem
maturity rather than purely technical merits (Meyerovich and Rabkin,
2013). These complementarities generate switching costs: the primary
barrier to adopting a new language is frequently the surrounding tool-
chain and library landscape rather than the syntax itself (Shrestha et al.,
2022). As a result, language portfolios tend to evolve in path-dependent
ways, with organizations moving to technologically proximate ecosys-
tems (e.g., within enterprise stacks or within data science stacks) rather
than jumping arbitrarily. For these reasons, programming languages can
play a role in software-based comparisons of economies that is analo-
gous to product categories or technology classes in traditional
complexity measures: they are observable, comparable across places,
and tied to capability accumulation.

Languages, however, are not the natural “activity unit” of software
production: most modern software systems rely on bundles of languages
that are used together as part of a coherent development stack (e.g.,
front-end web, data science, low-level systems). Treating each language
as an independent activity risks fragmenting what practitioners and
firms would recognize as a single capability bundle. To align the mea-
surement unit with how software diversification is typically con-
ceptualized—around software genres, use cases, and ecosystems rather
than individual technologies—we aggregate languages into clusters
based on their revealed co-use within repositories (Boudreau, 2012;
Cennamo and Santalo, 2019). The key idea is that repeated co-use
identifies stable bundles of complementary capabilities: languages that
are frequently used together tend to be part of the same development
stack, and these stacks are closer to the activities whose diversification
and sophistication economic complexity methods are designed to cap-
ture. in patent-based complexity, patent classes are already higher-level,
use-oriented groupings rather than the underlying set of technologies
used to produce the patent. Analogously, our co-use clusters summarize
software capability bundles rather than individual syntaxes, while still
being grounded in observable production choices.

In the empirical analysis, we therefore treat languages as the un-
derlying building blocks and use software bundles as the main unit of
observation. We construct these clusters using a project-level dataset of
all public GitHub repositories active up to 2024 and the set of pro-
gramming languages used in each repository. These clusters are inter-
pretable as capability bundles—e.g., a front-end web stack (HTML/CSS/
JavaScript), a data science stack (Python/Jupyter Notebook), or low-
level systems tooling (C/Assembly/Makefile)—and provide a tractable
and stable basis for country-level specialization patterns. We addition-
ally compute versions based on individual languages, theoretically
defined language groupings, and GitHub topics; these are used only as
robustness checks and reported in the Supplementary Information.

2.3. Scope and contribution

Traditional approaches to economic complexity overlook much of
the software sector's intangible and rapidly evolving nature. Program-
ming languages, in particular clusters of languages defined by comple-
mentary use, offer a way to fill this gap by reflecting embedded
knowledge, illustrating specialized skills, and revealing path-dependent
growth patterns.

Specifically, we address economic complexity's digital gap by using
data on the country level geographic distribution of programming lan-
guages and bundles used in OSS projects to estimate economic
complexity for the software sector and explore the principle of related-
ness in the context of OSS. This work does not aim to introduce a new
method to estimate economic complexity, but simply to apply an
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existing method to new data and explore the complementarity of these
estimates to those derived from well-known data sources (product ex-
ports, patents, and research publications). We acknowledge that there
has been considerable work exploring alternative mathematical defini-
tions of economic complexity, such as the transformational complexity
measure (Natera and Castellacci, 2021), the Log Product Diversity
(Inoua, 2023), the Ability index (Bustos and Yildirim, 2022), and the
Fitness complexity (Tacchella et al., 2012). Unlike these contributions,
our paper does not involve the introduction of a new mathematical
definition but the application of the Hidalgo and Hausmann (2009)
definition of economic complexity to open-source software data.

In the next section we present the data and methods used to calculate
these indicators and then explore their ability to explain international
variance in GDP per capita, income inequality, and emissions that is
unaccounted for by measures of complexity based on trade, patents, and
research papers. We then construct a network of related open-source
software bundles to explore the principle of relatedness in the context
of software.

3. Data and the construction of economic complexity measures

We begin by describing the data sources and methods used to
construct the country-activity matrices used in the complexity analysis.
A key step is that we treat programming languages as an observable
building blocks of software production but aggregate them into the
software bundles (a.k.a. technology stacks) used in practice. We then
apply the standard economic complexity methods to this coun-
try-bundle matrix. Finally, we construct a software bundle relatedness
network to test the principle of relatedness.

We use data on the geography of open-source software provided by
the GitHub Innovation Graph (GHIG)." GitHub is the leading platform
for OSS development, with over 100 million users worldwide. The
dataset presents the number of GitHub users pushing code—uploading
local code from a developer's machine to an online repository—by
country and programming language on a quarterly basis starting from
Q1 2020 and continuing until Q4 2023. GHIG data assigns software
contributions to countries based on the IP address of the developer. This
data provides a more accurate measure of a location's software activity
than sources relying on self-reported locations, which are known to
suffer from bias (Hecht et al., 2011). After completing the basic data
cleaning procedures explained in section S1 of the Supplementary in-
formation, we are left with a sample of 163 countries and 150 pro-
gramming languages for the period of 2020-2023.

To define the activity categories used in our main EC speci-
fication, we group programming languages into clusters based on their
complementary use within repositories. We build these clusters from a
separate project-level dataset constructed as follows. First, we identified
GitHub repositories that were active in 2024 using GHArchive. Second,
for each active repository we queried the GitHub GraphQL API to
retrieve its set of programming languages. Repositories typically contain
multiple languages; we restrict attention to the set of languages that
overlap with the 150 languages retained in the GitHub Innovation Graph
(GHIG) sample.

We then construct weighted language occurrence and co-occurrence
counts in a way that prevents highly polyglot repositories from domi-
nating similarity estimates. For each repository with n distinct in-scope
languages, we assign each language a weight of 1/n, so that the total
language weight contributed by a repository adds to 1. For each unor-
dered language pair within the repository, we assign a weight of
2/[n(n — 1)], so that the total pair weight also adds to 1 for repositories
with n > 1. Aggregating these weights across repositories yields (i)
weighted marginal counts ¢; for each language [, and (ii) weighted co-
occurrence counts ¢;; for each pair (I,I'). From these counts we

Isoftware

! GitHub Innovation Graph https://github.com/github/innovationgraph
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compute cosine similarity between languages. For languages 1 and [,
cosine similarity is defined as:

Gr

C1/Cy

Sy =

We convert similarity to distance as: d;; = 1 — s;;, and apply hier-
archical agglomerative clustering to this distance matrix (linkage as
implemented in our code). We obtain our baseline partition by cutting
the dendrogram at a distance threshold chosen to yield an interpretable
set of clusters (59 in the baseline). Each programming language is
assigned to exactly one software bundle or co-use cluster.

Finally, we map GHIG language-level country activity into a coun-
try-bundle matrix by summing over languages within each bundle. Let
X, denote the number of developers in country ¢ pushing code in lan-
guage | (from GHIG). For each cluster k, we define:

Xck = Zxcl

lek

This country-bundle matrix X is the main input to our construction
of ECI*™a'® below. In the Supplementary Information (S1, S3, $4), we
present three alternative operationalizations of ECI*°f™2 based on
individual languages, theoretical clusters of languages derived from the
computer science literature, and topics (user tags of project content).

We estimate the Economic Complexity Index (ECI) using the stan-
dard technique introduced by (Hidalgo and Hausmann, 2009). Let Xk be
a matrix counting the number of developers with an IP in country ¢
pushing code to GitHub in software bundle k. We use Xk to derive the
matrix of specialization or revealed comparative advantage R as:

Ru =

XX’

where omitted indexes have been added over (e.g. X. = > ; X4). We
then binarize the matrix R, to generate the matrix My = 1if Ry > 1 or
0 otherwise. Finally, we let the economic complexity index of a country ¢
(ECI,) and the software bundle complexity index of an activity k (PCI)
be defined as the steady state of the map:

1
ECL = MZMckPCIk
¢ k

1
PCI, = M—kZMCkECIC

As is customary, we normalize ECI and PCI values by subtracting
their respective mean and dividing them by their standard deviation.

There are several interpretations of ECIL. In the context of a supply
side production function, it is a method to recover an economy's capa-
bilities from a matrix of geographic specialization (Hidalgo and Stoj-
koski, 2025). ECI is also a spectral-clustering method that identifies
whether an economy belongs to the high- or low-capability cluster, by
assigning a number to each economy and to each activity that minimizes
the distance between the number assigned to each economy and the
numbers assigned to each activity (Bottai et al., 2024; Mealy et al., 2019;
Servedio et al., 2024). That is, it provides an optimal one-factor split of
the specialization matrix. From an intuitive perspective, the capability
interpretation of economic complexity simply means that higher
complexity economies tend to be endowed with more of the comple-
mentary factors of production needed to specialize in activities.

We compare ECI indicators derived from open-source software
(ECroftvarey with the multidimensional economic complexity data
compiled by (Stojkoski et al., 2023b), which uses trade data from the
Observatory of Economic Complexity (oec.world), patent data from the
World Intellectual Property Organization's International Patent System,
and research publication data from SCImago Journal & Country Rank
portal. These datasets are described in detail in section S5 of the Sup-
plementary information.
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We explore the ability of ECI*f™a to complement traditional eco-
nomic complexity measures in explaining international variation in GDP
per capita, income inequality, and emissions. All macroeconomic in-
dicators are derived from the Databank of The World Bank. We use
simple cross-sectional Ordinary Least Squares (OLS) models, based on
around 90 observations, since the relatively short coverage of the GHIG
data (four years) limits our analysis to controlled correlation tests.

We test the principle of relatedness following the approach intro-
duced in the product space (Hidalgo et al., 2007), which starts from the
same specialization matrix (M) we used to derive measures of economic
complexity. Formally, we define the proximity between two software
bundles k and k’ as the minimum of the two conditional probabilities
that a country specialized in one is also specialized in the other:

ZMckok’
C
Puac = max (Mg, My,)

And define the relatedness between a country ¢ and a software
bundle k as:
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comparative advantage (RCA >1) in 2022 and 2023 (e.g. My =
{0,0,1,1} for the years 2020 to 2023). Our models predict entry as a
function of relatedness and software bundle ubiquity.

4. Results
4.1. Software and economic complexity

We begin our analysis by comparing our estimate of economic
complexity based on the geography of programming languages clusters
(ECI®f™™2r¢) with published estimates of economic complexity based on
physical product exports (ECI™¢), patents (ECI'*“"™1°8Y) and research
publications (ECresearchy (Stojkoski et al., 2023b).

Fig. 1A compares four specialization matrices (M) where countries
are sorted by diversity (number of products, software bundles they
specialize in, etc.) and columns are sorted by ubiquity (number of
countries specialized in each software bundle, product, etc.). Much like
the specialization matrices for trade, patents, and research papers, the
country-software bundle matrix exhibits a nested structure (Bustos et al.,

S Mo 2012; Mariani et al., 2019), meaning that low diversity economies tend
Og =X to specialize in a subset of ubiquitous activities found in more diverse
i economies.

Where again, missing indices have been added over (e.g. ¢ = > 1 ¢rx)-

To assess whether countries are more likely to enter software bundles
related to their existing portfolio of open-source software specializa-
tions, we run linear probability models with country and language-
cluster fixed effects. We estimate relatedness using 2020 data and say
that a country enters a software bundle if they were not specialized in
that software bundle (RCA < 1) in 2020 and 2021 and then gained

A

Software

Country

Software bundle Product

Fig. 1B shows a map of ECI**f™"based ranking of countries con-
structed from the country-software bundle matrix and Fig. 1C compares
ECI®°f™"2" with the three other ECI measures, showing that the geogra-
phy of software complexity is different from that expressed in data on
products, patents, and research publications. For instance, Russia (RUS),
a well-known natural resource exporter with a low ECI™€ score (0.112
on a normalized [—1,1] scale), scores much higher in Ecreftware (g 872

Specialization matrices

Trade

Research

Technology
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on a normalized [—1,1] scale). Similarly, India (IND) scores much higher
in ECI®f™are (9 606) than in ECI"5¢®"" (_0.633). The contrast between
software and the other dimensions is highlighted by cases such as
Indonesia (IDN) and Pakistan (PAK), which rank relatively high in
ECrsoftware (g 872 and 0.225) despite scoring much lower in the other ECI
measures. Section S6 of the Supplementary information presents a table
comparing the values of ECroftware geytrade peptechnology op q gpresearch
for all countries in our sample.

Next, we explore whether ECI®f™2 complements other measures of
economic complexity in explaining international variation in GDP per
capita, income inequality, and emissions. Descriptive statistics for the
key variables are presented in section S7 of the Supplementary
information.

Table 1 shows that the correlation between ECI**®™2™ and GDP per
capita remains strong after controlling for other estimates of economic
complexity. In fact, ECI*f"* works out to be as good as ECI"%€ at
explaining international variations in GDP per capita in the complete
model (column 8). This validates ECI*°ft"a™ a5 2 complementary indi-
cator by showing that there is information about international variations
in GDP per capita contained in ECI*®®™2' that is not redundant with the
information captured by the other ECIs. Moreover, the robustness of
results across different model specifications suggests ECI®f" s a
reliable and consistent predictor. We also note that in this model ECI™d¢
remains statistically significant across specifications, but ECIechnolosy
and ECI**f™2' Jose their significance in the full models, suggesting that
the information about international variations in GDP per capita carried
by them is redundant with the information available in ECI*f™™ and
ECItrade'

Economic complexity indicators often show patterns of spatial clus-
tering, as illustrated in Fig. 1A. Moran's I confirms spatial autocorrela-
tion (global Moran's I = 0.483, p < 0.01), suggesting that countries with
similar ECI°f™* values are geographically proximate, deviating
significantly from a random distribution (Salinas, 2021). To address
potential endogeneity issues and illustrate the robustness of our results,
we provide instrumental variable (IV) regressions, following the iden-
tification strategy in Stojkoski et al. (2023b). Detailed explanation and
all the related regression results can be found in section S8 of the Sup-
plementary information. The IV regressions in models (2) and (10) of
Table 1 show results comparable to our baseline estimations.

Next, we look at the ability of ECI*®f"2" to explain international
variations in income inequality (Table 2). Since official data on income
inequality are infrequently published, and Gini coefficients vary slowly
over time, we use the average Gini coefficient from the 2020-2022
period. Despite the more limited sample, we find the same negative and
significant relationship between income inequality and ECI®fa', In
fact, ECI®M™ remains strong, negative, and significant across all
specifications. We also find ECI'®*¢*™" remains significant, albeit with a
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positive coefficient.

Finally, we look at the intensity of greenhouse gas emissions (emis-
sions per unit of GDP per capita) (Table 3). This is a particularly inter-
esting outcome for ECI*™&® because compared to the physical
economy, software and information technologies are expected to be a
less carbon-intensive way to generate GDP (Ciuriak and Ptashkina,
2020; Haberl et al., 2020; Hubacek et al., 2021; Romero and Gramkow,
2021; Stojkoski et al., 2023a; Wang and Zhang, 2021; Wiedenhofer
et al., 2020).

Our results suggest that software complexity is negatively associated
with emissions per unit of GDP in simpler specifications. However, in
full models that account for multiple dimensions of complexity, this
effect becomes statistically insignificant. This pattern indicates that
ECI®ft"are apd ECI°?™M may share overlapping explanatory power. The
variance inflation factor (VIF) analysis (section S14) suggests some de-
gree of collinearity between software and research complexity. While
economies with high software complexity tend to have high research
complexity (their individual effects on emissions seem to operate
through distinct mechanisms, as evidenced by a non-significant inter-
action term we testedl. O separately). One interpretation of these find-
ings is that ECI"®**2™M absorbs part of the explanatory power of ECI**ftware
in predicting emissions, since research-driven economies may be more
likely to invest in low-carbon technologies and knowledge-intensive,
low-emission industries.

Correlating ECIf™®® with income inequality and emissions in-
tensity allows us to test the Kuznets hypotheses. In section S9 of the
Supplementary information, we present regressions including a squared
term for GDP per capita. The results support the Kuznets hypothesis for
income inequality, indicating an inverted U-shaped relationship, but
show little evidence of such a pattern for emissions intensity.

4.2. Related diversification in open-source software

Having validated ECI®"™™ as a complementary measure of eco-
nomic complexity, we now explore whether changes in the software
specialization of countries is subject to the principle of relatedness: the
notion that economies are more likely to enter—and less likely to
exit—related activities (Autant-Bernard, 2001; Guevara et al., 2016;
Hidalgo et al., 2018, 2007; Jaffe, 1986; Neffke et al., 2011; Neffke and
Henning, 2013).

Table 4 present our linear probability models predicting entry events
as a function of relatedness and the ubiquity of a software bundle or
language cluster. We also include country and bundle fixed effects and
employ clustered standard errors by country to account for within-
country correlations over time, ensuring robust and reliable standard
errors in our regression models. Estimations based on logit models can
be found in section S10 of the Supplementary information.

Table 1
ECI*°f™2r and GDP per capita (2020) in a multidimensional setting. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.
GDP per capita (log)
@™ (2) 3 @ ) (6) ) ® (©)] (10)
ECIsof(ware 0.343%** 0.358%** 0.180%** 0.192%** 0.338%** 0.125%%* 0.169%**
(0.025) (0.026) (0.037) (0.037) (0.037) (0.044) (0.043)
ECITade 0.337%*** 0.222%** 0.190%** 0.177%**
(0.028) (0.037) (0.046) (0.045)
ECItechnology 0.266*** 0.156%** 0.063* 0.051
(0.021) (0.029) (0.035) (0.036)
ECrresearch 0.140%** 0.006 0.022 0.013
(0.025) (0.028) (0.026) (0.025)
Population (In) —0.146%** —0.150%** —0.079%** —0.103*** —0.066*** —0.117%** —0.133%** —0.145%** —0.122%** —0.120%**
(0.017) (0.017) (0.015) (0.019) (0.020) (0.014) (0.017) (0.019) (0.016) (0.016)
Natural resources (In) 0.015 0.018 0.023* —0.018 —0.037** 0.034%** 0.007 0.015 0.028** 0.031**
(0.012) (0.013) (0.013) (0.012) (0.018) (0.012) (0.011) (0.012) (0.014) (0.014)
Instrumental variable No Yes No No No No No No No Yes
Observations 93 93 93 93 93 93 93 93 93 93
R? 0.648 0.647 0.693 0.654 0.374 0.753 0.711 0.648 0.764 0.762
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Table 2
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ECI**f™a' and income inequality in a multidimensional setting. ECI estimates are based on 2020 data, while the dependent variable is the average Gini coefficient
between 2020 and 2022. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

Gini coefficient

(€8] (2) ®3) @ ) 6) @) (©)] (©)] (10
ECroftware —1.038%** —1.054*** —0.905** —1.033%** —0.981*** —0.920%* —0.966**
(0.353) (0.413) (0.358) (0.409) (0.349) (0.381) (0.416)
ECJirade —0.679** —0.500* —0.359 —0.354
(0.289) (0.275) (0.293) (0.294)
ECtechnology -0.219 -0.013 0.061 0.069
(0.253) (0.288) (0.285) (0.281)
ECIresearch 0.419** 0.387%* 0.332%* 0.331%*
(0.158) (0.144) (0.153) (0.154)
GDP per capita (In) 0.905%** 0.918** 0.612* 0.262 —0.330 1.219%** 0.914%** 0.521 0.759%* 0.787%*
(0.350) (0.389) (0.322) (0.324) (0.249) (0.357) (0.350) (0.344) (0.343) (0.367)
Population (In) 0.455%** 0.460%** 0.222%* 0.177* 0.090 0.481*** 0.456*** 0.401%** 0.422%** 0.435%**
(0.129) (0.146) (0.088) (0.091) (0.078) (0.127) (0.125) (0.116) (0.113) (0.128)
Natural resources (In) 0.250%* 0.248** 0.286** 0.354%** 0.400%** 0.224* 0.251** 0.313%** 0.279** 0.274%*
(0.109) (0.112) (0.117) (0.112) (0.092) (0.117) (0.113) (0.097) (0.117) (0.121)
Instrumental variable No Yes No No No No No No No Yes
Observations 48 48 48 48 48 48 48 48 48 48
R? 0.409 0.409 0.357 0.299 0.376 0.445 0.409 0.484 0.499 0.499

Table 3
ECI**far¢ and greenhouse gas emission intensity (2020) in a multidimensional setting. Robust standard errors in parentheses. Significance codes: *p < 0.1, **p < 0.05,
##kp < 0.01.
Emission per GDP (log)
@ 2 3 €] 5) 6) ) ()] ©)] 10)
ECpeoftware —0.115%** —0.112** —0.118%** —0.106** —0.079* —0.072 —0.059
(0.041) (0.043) (0.043) (0.047) (0.044) (0.050) (0.052)
ECIirade -0.021 0.012 0.001 -0.001
(0.040) (0.040) (0.042) (0.042)
ECtechnology —0.052 -0.016 -0.014 -0.017
(0.033) (0.038) (0.039) (0.039)
ECrresearch —0.064*** —0.046** —0.046** —0.048**
(0.020) (0.021) (0.021) (0.022)
GDP per capita (In) 0.011 0.009 —0.051 —0.020 —0.031 0.004 0.019 0.013 0.019 0.016
(0.027) (0.028) (0.032) (0.030) (0.024) (0.034) (0.029) (0.026) (0.034) (0.034)
Population (In) 0.031* 0.030 —0.005 0.006 —0.002 0.030 0.032* 0.024 0.025 0.022
(0.018) (0.018) (0.014) (0.016) (0.013) (0.018) (0.018) (0.018) (0.018) (0.018)
Natural resources (In) 0.054%** 0.055%** 0.066%** 0.067*** 0.062%** 0.056*** 0.055%** 0.053*** 0.054%** 0.055%**
(0.013) (0.014) (0.015) (0.012) (0.012) (0.014) (0.013) (0.013) (0.015) (0.015)
Instrumental variable No Yes No No No No No No No Yes
Observations 92 92 92 92 92 92 92 92 92 92
R? 0.553 0.553 0.506 0.521 0.557 0.553 0.554 0.576 0.577 0.577
Table 4

Entry models on countries gaining revealed comparative advantage (RCA > 1) in software bundles (2020—2023). Standard errors are clustered at the country level.
Significance codes: *p < 0.1, **p < 0.05, ***p < 0.01.

Entry

(€8] 2) 3) @ ®) 6) @)
Relatedness density 0.154** 0.349** 0.282%** 0.429** 0.171%* 0.328**

(0.072) (0.133) (0.097) (0.174) (0.079) (0.134)
Ubiquity —0.006 —0.012 —0.012

(0.009) (0.010) (0.010)

Country FE No Yes No Yes No No Yes
Software bundle FE No No Yes Yes No No No
Observations 764 764 764 764 764 764 764
R? 0.013 0.187 0.118 0.271 0.001 0.016 0.189

Table 4 suggests that open-source software specialization follows the
principle of relatedness, with countries being more likely to specialize in
software bundles that are related to those they are currently specialized
in. The negative and significant effect of bundle ubiquity indicates that
countries are less likely to enter common language bundles, which is
reasonable since many countries already have comparative advantage in
them. While relatedness in the case of OSS behaves similarly across both
simpler and more complex models, its explanatory power remains

limited, with a baseline R? of about 1%. We suggest a few reasons why
this is still a significant finding. First, entry is a rare event: we observe 42
entrances vs 722 non-entrances. Second, the R-squared values of the
models with country and language-cluster fixed effects are much higher
(27%) and the estimate of the effect of relatedness on entry is about
three times as large as in the baseline model (0.154 vs 0.429). Third,
similar levels of explanatory power are observed in other papers testing
the principle of relatedness (for example see Balland et al., 2018; and for
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a general overview see Li and Neffke, 2024). Interpreting the effect size
also indicates the significance of relatedness as a correlate of entry. The
mean of the relatedness measure in the full sample is 0.326, with a
standard deviation of 0.168. Moving from the mean to one standard
deviation above it is associated with a 7.2-percentage-point increase in
the probability of entry, nearly double the base rate of entry of 5-6% to
about 12-13%.

Fig. 2 shows the network of related software bundles following the
visualization approach of (Hidalgo et al., 2007). Fig. 2A highlights a few
example software bundles, with labels listing all programming lan-
guages within each. We then focus on the entry and exit patterns of three
countries on Fig. 2B. In each case, entries occur into bundles that are
adjacent to existing specializations, while exits tend to occur out of more
weakly connected bundles.

Fig. 2B highlights contrasting dynamics in countries' software
capability portfolios, measured as entries and exits in revealed
comparative advantage (RCA) across software bundles. China exhibits
multiple entries, consistent with an expanding and diversifying software
profile: it is increasingly likely to develop comparative advantage in
additional capability bundles, suggesting active broadening of its OSS
specializations. Great Britain shows comparatively few transitions,
indicating a more stable specialization structure over the period—its
portfolio appears to evolve gradually, with limited reallocation across
bundles. Russia, in contrast, displays several exits, consistent with a
contraction or relative weakening of specialization in a set of capability
bundles, likely related to large scale emigration of software developers
in the wake of the 2022 invasion of Ukraine (Wachs, 2023).

We then explore the principle of relatedness in the context of exits
(Table 5). We consider exits as countries that were specialized in a
software bundle (RCA > 1) in 2020 and 2021 and later lost their
comparative advantage (RCA < 1) in 2022 and 2023 (e.g. Mg =
{1,1,0,0} for the years going from 2020 to 2023). The negative and
significant effect of relatedness across both simpler and more complex
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models indicates that countries are less likely to lose their advantage in
software bundles that are related to those they currently specialize in.
Again, the effects of relatedness are overall mild (R? < 3% on the
baseline model) but are robust to the inclusion of country and bundle
fixed-effects, showing that they go beyond what can explained based on
the statistic characteristics of a country or bundle.

4.3. Robustness checks and alternative approaches

We verify the consistency of our findings through multiple alterna-
tive specifications and modeling strategies. First, we confirm that the
main results hold when varying RCA thresholds or applying Tobit re-
gressions to account for the nature of the dependent variables (see
section S10 and S11 in the Supplementary information). We also verify
that restricting the sample to countries with fully available macroeco-
nomic data does not alter the significance or direction of our co-
efficients, indicating that sample selection does not drive our
conclusions (see section S13 in the Supplementary information).
Further, to address potential statistical concerns, we check for multi-
collinearity through VIF analyses and remove mathematical de-
pendencies from key variables, ensuring that the variables used are valid
and adequately capture different dimensions of complexity (see section
S14 in the Supplementary information for more details).

Second, we go back to our alternative definitions of EC
show that our conclusions hold when we define software complexity on
different basis, either by grouping languages into theoretical clusters (e.
g., web-oriented or system-level languages; see S3) or by using a mea-
sure based on topics (S4), or simply by consider languages themselves
(S1). We find that even when we change the unit of observation to
topics, ECI*®f™2™® remains positively correlated with GDP per capita and
negatively correlated with income inequality.

Our findings on the relationship between EC and macroeco-
nomic indicators are based on cross-sectional regressions. In section S15
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Table 5
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Exit models on countries losing revealed comparative advantage (RCA < 1) in software bundles (2020-2023). Standard errors are clustered at the country level.

Significance codes: *p < 0.1, **p < 0.05,

Exit

@ (2) 3) 4 5) © )
Relatedness density —0.160%** —0.405%** —0.190%** —0.285** —0.223%** —0.348%**

(0.033) (0.105) (0.044) (0.116) (0.043) (0.099)
Ubiquity —0.006 —0.027%** —0.018**

(0.006) (0.008) (0.009)

Country FE No Yes No Yes No No Yes
Software bundle FE No No Yes Yes No No No
Observations 1544 1544 1544 1544 1544 1544 1544
R? 0.023 0.185 0.116 0.257 0.001 0.035 0.187

of the Supplementary information, we replicate GDP growth models in
the style of Hidalgo and Hausmann (2009). However, this is not rec-
ommended due to the limited time span of available data (2020-2023),
since measures of complexity are structural measures that are connected
to long term growth (so we should not expect significance in short time
periods dominated by other dynamics, such as the covid bounce-back in
this case). As expected, we find that neither ECI*f™2™ nor ECI™de
significantly predicts GDP growth. Structural measures such as ECrft
Ware tend to be stable over time, whereas short-term growth outcomes
are more volatile. Supporting this, we find that ECI**"™?™® remains
highly stable across years, with correlations exceeding 0.92 (see section
S16 of the Supplementary information), suggesting its predictive power
may become more apparent over longer time horizons. Additionally, we
provide an extensive explanation of our instrumental variable approach,
including extended models and tests in section S8 of the Supplementary
information. However, testing for potential endogeneity using in-
struments for other complexity measures—or between complexity
measures themselves, such as ECI*™a® and ECI®®M°1°8Y__was beyond
the scope of this paper. Together, these tests demonstrate that our main
results are stable and robust, even when we account for alternative
definitions, model specifications, and potential sources of bias.

5. Discussion

Here we expanded the study of economic complexity to include the
software sector by leveraging recently published data on the geography
of open-source software (OSS). By relying on the IP addresses of the
developers contributing to OSS projects, instead of on self-reported lo-
cations (which can suffer from reporting bias (Hecht et al., 2011)), we
were able to construct estimates of the geographic distribution of open-
source software language knowledge for 100+ programming languages
and use them to create internationally comparable estimates of eco-
nomic complexity for the software sector and to study OSS's diffusion in
the context of the principle of relatedness. Our study provides a cross-
country measure of software economic complexity and demonstrates it
complements well-established ECI metrics based on trade, patents and
research.

Building on prior studies linking software specialization to broader
skill formation and productivity gains (Brynjolfsson and Hitt, 2003;
Nagle, 2019, 2018; Wright et al., 2023), our results indicate that
countries with higher software-based economic complexity may be
better equipped to generate inclusive growth—thereby reducing
inequality. This aligns with research showing that knowledge-intensive
economies can create wider opportunities for high-skilled labor, miti-
gating income disparities (Hartmann et al., 2017). Although not
consistently significant across all models, the observed negative asso-
ciation between software complexity and emissions aligns directionally
with prior evidence that digitally driven economies may reduce their
reliance on resource-intensive activities (Haberl et al., 2020; Stojkoski
et al., 2024). These points suggest that software complexity could serve
as a policy-relevant indicator for steering economies towards less envi-
ronmentally taxing activities. In sum, our study contributes to the

literature by offering both an empirical measure of software capabilities
and an interpretation, consistent with earlier scholarship, of how these
capabilities might shape pathways of inclusive and sustainable growth.

We also found that ECI**®™2™ complements other measures of eco-
nomic complexity when explaining macro-outcomes. One plausible
interpretation of this complementarity is that the overlap between these
different activities is not exhaustive, and hence, the differences among
them are informative. Patent data includes many non-software activ-
ities, such as patents in biotech or the life sciences. Similarly, research
publication data also includes many non-software related sectors, such
as publications in history or philosophy. Also, open-source software data
may provide some additional granularity that might not be available in
the other data sources. For example, OSS data involves hundreds of
unique languages, which provide a resolution over the software sector
that is larger than the one captured in research publication data. The
idea that correlated measures of complexity can prove to be comple-
mentary is at the core of the idea of multidimensional complexity
(Stojkoski et al., 2023a, 2023b), which is based on the idea that infor-
mation on the geography of different activities (products, patents, pa-
pers, software, etc.) captures different levels of detail making them
mutually reinforcing. In simple terms, they fill each other's “gaps.”

But what can we make of these findings? First, that economic
complexity measures derived from OSS production do indeed correlate
significantly with GDP, inequality, and emissions suggests that software
complexity can suggest productive diversification directions. The liter-
ature on economic development is rife with work advising economies to
diversify towards more complex economic activities (Balland et al.,
2018; Hausmann et al, 2014; Hidalgo, 2023). High economic
complexity activities are associated with better wages and may face less
competition in international markets than the production of more
ubiquitous commodities. The question that remains is whether this
advice can translate to software. We argue that many of the unique as-
pects of software make it especially attractive for specific kinds of
diversification strategies.

Unlike physical products, software relies less on immobile factors,
such as large manufacturing or processing plants and natural resources.
At the same time, software outputs are highly tradable (OECD, 2023;
Stojkoski et al., 2024) and digital products are known to be—on aver-
age—of relatively high complexity compared to physical products
(Stojkoski et al., 2024). Further, transformer models on platforms like
Hugging Face make deep learning accessible with pre-trained models
that require significantly fewer resources (Wolf et al., 2019). This means
that software provides new opportunities for structural upgrading that
are less reliant on physical factors of production and more reliant on
efforts to attract human capital. Combined with our finding that diver-
sification in software follows the principle of relatedness, policymakers
should seek to attract experts in complex software technologies most
related to current areas of strength.

Future research could explore how Al-driven productivity gains
might alter the rate at which regions diversify into more sophisticated
software niches—and whether that facilitates or hinders upward
movement in the digital value chain.
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While our study suggests how to estimate, validate, and use measures
of economic complexity based on software, it is also subject to several
important limitations that may affect the interpretation of our results.
First, because our data exclusively captures OSS activity on GitHub, we
may underestimate important proprietary or closed-source capa-
bilities—and overlook OSS activity on other platforms. This can lead us
to systematically undervalue software complexity in certain economies
(for instance, where non-GitHub or closed-source development is pre-
dominant). Even OSS projects hosted outside of GitHub are also different
on average, for example they are more likely to be academic (Trujillo
et al., 2022). Moreover, our assumption that GitHub-based OSS
specialization reflects broader digital skills—while supported by
research on OSS's role in innovation— may still introduces measurement
error. Ultimately, some countries may possess stronger sofOSStware
capabilities than our metrics reveal, which could influence the strength
of the observed correlations with macroeconomic outcomes.

Second, applying product-complexity methods to programming
languages poses conceptual challenges. We treat languages as distinct
units of analysis, a choice which offers clear interpretability but sim-
plifies the complex relationships between them. For instance, languages
may relate through complementary usage (e.g., HTML and CSS) rather
than hierarchical supply chains, meaning the “distance” between them
may not perfectly map onto traditional complexity notions. We explored
alternative specifications, such as considering individual languages or
theoretical clusters instead of bundles as the basis for the ECI calculation
in our robustness checks (see Supplementary Information). While these
aggregations largely confirm our results, we retain the software bundle
approach in our main analysis for its robustness. Ultimately, path-
dependent software diversification may follow different patterns than
those in manufacturing, and more granular data (e.g., at the project or
framework level) will be valuable for future work.

Nevertheless, despite these limitations, our work represents a valu-
able step towards extending economic complexity analysis to the digital
realm, offering insights into the geographic distribution of software
capabilities and their potential impact on macroeconomic outcomes.
Software complexity is a significant complement to trade, research, and
technology complexity measures because it covers a specific and
important class of capabilities; this is demonstrated by its ability to
extend the predictive power of models of key macro-outcomes including
growth, inequality, and emission intensity. As the digital economy
continues to evolve, further research integrating diverse data sources
will be crucial. Understanding how emerging technologies, particularly
in artificial intelligence (Daniotti et al., 2025; Del Rio-Chanona et al.,
2024), may alter the nature of software capabilities and pathways for
diversification remains a key challenge for the future.
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