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Urban highways are common, especially in the United States, making cities more car-
centric. They promise the annihilation of distance but obstruct pedestrian mobility,
thus playing a key role in limiting social interactions locally. Although this limiting role
is widely acknowledged in urban studies, the quantitative relationship between urban
highways and social ties is barely tested. Here, we define a Barrier Score that relates
massive, geolocated online social network data to highways in the 50 largest US cities.
At the granularity of individual social ties, we show that urban highways are associated
with decreased social connectivity. This barrier effect is especially strong for short
distances and consistent with historical cases of highways that were built to purposefully
disrupt or isolate Black neighborhoods. By combining spatial infrastructure with social
tie data, our method adds a dimension to demographic studies of social segregation.
Our study can inform reparative planning for an evidence-based reduction of spatial
inequality, and more generally, support a better integration of the social fabric in urban
planning.
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Cities are hubs of concentrated social capital that can foster diversity and innovation (1, 2).
However, this potential is threatened by spatial fragmentation through built infrastructure
that can divide neighborhoods (3, 4), exacerbate inequalities (5, 6), and contribute to
segregation (7). Among various types of barriers fragmenting urban areas, roads designed
for motorized traffic are the most ubiquitous, especially highways (4, 8, 9). Since the
1960s, urban planners have theorized that high-traffic roads reduce opportunities for
creating and maintaining social ties across divided neighborhoods (10), thus undermining
the social cohesion essential for the development of thriving communities. This premise
lies at the core of contemporary urban planning research and interventions (11, 12)
that strive to meet the UN’s sustainable development goal of “making cities and human
settlements inclusive, safe, resilient, and sustainable” (13).

Despite its significance in urban planning theories, the association between high-traffic
roads and reduced social connectivity has never been measured empirically, with the
notable exception of a few small-scale, survey-based studies (14, 15). Previous quantitative
research in this area, constrained by the scarcity of georeferenced social network data (16,
17), has focused instead on measuring socioeconomic segregation in cities. This goal
has been achieved either by using static demographic data (7, 18) or, more recently,
through mobility data (19–21), with only sporadic attempts to link segregation to urban
barriers (6, 22, 23). While highly valuable, such previous research could not explicitly
consider social ties. However, providing an explicit, quantitative estimation of the barrier
effect of different roads in curbing social ties is crucial for guiding evidence-based plans
of restorative urban interventions and for prioritizing them according to their estimated
benefits (24).

To fill this gap, we introduce a method to systematically quantify the association
between highways and social ties at multiple scales, ranging from individual highway
segments to entire metropolitan areas. We focus on the network of urban highways
in the United States. This highway network offers a compelling subject for the study
of barrier effects: With a cost of at least 1.4 trillion USD (25), US highways were
built to bridge city centers and newly created suburbs; simultaneously, they displaced
an estimated 1 million people from their neighborhoods and today pose hard-to-cross
physical barriers to pedestrians and cyclists (4, 26).

Onto this network of urban highways within the 50 largest metropolitan areas in the
United States, we overlay a massive geolocated social network of ties between individuals
who follow each other on Twitter (27). We compute a Barrier Score which quantifies
the reduction in the number of social ties crossing highways, comparing the empirical
crossings with a null model that makes ties oblivious to highways. The distribution
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of Barrier Scores reveals that in all 50 cities, the presence of
highways consistently correlates with reduced social connectivity
compared to the null model, showing that urban highways are
barriers to social ties. This reduction is stronger between people
living closer to each other, peaking at distances below 5 km in
most cities and fading beyond 20 km.

Notoriously, urban highways in the United States have
been instrumentalized for government-backed racial segregation,
creating social divides between communities that persist to this
day (9, 28). We therefore revisit several highways in US cities that
are well documented for their historic role in racial segregation,
finding potential evidence for long-lasting effects several decades
after their construction, by measuring high Barrier Scores in
contemporary social networks.

Results

Our starting point is a large collection of Twitter user activity
from 2012 to 2013 (27) that contains the approximate home
locations of almost 1M Twitter users living within the boundaries
of the 50 most populous metropolitan areas in the United
States. These users are connected by more than 2.7M social ties
representing mutual followership (29). SI Appendix, Fig. S1 and
Table S1 provide detailed statistics on the data. To this social tie
data, we relate urban highway networks extracted from Open-
StreetMap (OSM) (30). See details in Materials and Methods.

Fig. 1A shows a small data sample to illustrate how we relate
social ties to highway data. In this example of a particular
highway section i, we count social ties crossing it ci = 94 times.
Ideally, quantifying the correlation between the presence of a
highway and the social ties crossing would require comparing
the frequency of social ties intersecting the highway in the
empirical data against the same frequency from data collected
in a hypothetical counterfactual scenario without highways. To
approximate this ideal setting using observational data only, we
construct a null model of the social network and compare the
observed network patterns to this randomized setting (Fig. 1B).
Our null model rewires social ties by preserving the original
degree of nodes, the distance between connected users, and the
tendency of creating ties with people living in densely populated
areas (SI Appendix, Figs. S5 and S6 and Tables S2–S4), known as
the spatial gravity law (31). This model preserves the fundamental
properties of the original social network with minimal error (SI
Appendix, Fig. S7) while disrupting any correlation with highway
locations, as the model is oblivious to them. Fig. 1C shows the
rewired version of the example ties from Fig. 1A. In this example,
we now count these null model ties crossing the highway section
cnull
i = 152 times.

Using this null model, we define the Highway Barrier Score

Bi = cnull
i −ci
ci for a highway section i as the relative difference in the

average number of social ties crossing the section in 20 random
realizations of the null model (cnull

i ) versus the empirical data (ci).
This score reflects the hypothetical increase in social ties crossing
the path of the highway in its absence. Positive scores indicate
that highways are associated with reduced social connectivity
across the regions they bisect. In our example (Fig. 1D), the
Highway Barrier Score of Bi = 152−94

94 = +62% means that in a
world where social connections are independent of the presence
of highways, there are 62% more social ties crossing the highway
section i.

Generalizing the Highway Barrier Score Bi to a whole city, we
define the Barrier Score B which aggregates local scores across

D Barrier Score

B = 
152-94

94

= +62%

Social tie

Rewired tie

B Rewiring

152 crosses

C Null model ties

A Social ties

94 crosses

i

Fig. 1. The Highway Barrier Score measures the association between
highways and social ties crossing them. Calculating the Barrier Score Bi of a
highway section i follows four steps. The illustrated highway section consists
of highway I-94 and the 8 Mile Road in Detroit. (A) Social ties: Count the
number of times ci = 94 that social ties (gray) between home locations of
individuals (gray dots) cross the highway i (red). (B) Rewiring: A spatial null
model randomly rewires all social ties within a distance ring with a radius
equal to the length of the original social tie. Within the ring, a random node is
selected for rewiring with probability proportional to the local user population
density, to reflect the spatial gravity law. The rewired null model ties remove
any relationship between ties and highways because the rewiring is agnostic
to highways. (C) Null model ties: Count the number of crosses cnull

i = 152
of null model ties with the highway. (D) Highway Barrier Score: Calculate the

Highway Barrier Score as Bi =
cnull
i −ci
ci

. In this example, Bi = +62%, which
is the relative increase of social ties crossing the highway if ties were formed
disregarding its presence. For illustration purposes, in this figure, we only
plot links that are fully within the view area.
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all highways and social ties over the entire metropolitan area,
measuring the average increase in highway crossings per social tie
in the null model relative to the observed data. This aggregate
score captures a wide range of social tie distances up to 10 km
and normalizes them appropriately; see Eq. 3 in Materials and
Methods.

Barrier Scores Are Positive and Diminish with Distance. The
Barrier Scores B for 50 cities, reported in Fig. 2, Right,
consistently show positive values, ranging from +1% in Portland
to +16% in Cleveland, indicating that in general, highways are
associated with fewer social connections in all considered cities.

Starting from this overall city-wide score B, let us zoom back
in, still considering all of a city’s highways but limiting ourselves
to social ties connecting users at a fixed distance of d km. This
distance-binned Barrier Score B(d) allows us to explore how
the association between highway presence and reduced social
connectivity varies with the geographical distance between users.
The heatmap in Fig. 2 shows statistically significant Barrier Scores
B(d) calculated for social ties of fixed distance up to 10 km. All
values, including nonsignificant ones, are shown in SI Appendix,
Fig. S8, and values up to 20 km are shown in SI Appendix, Fig. S9.
Generally, Barrier Scores are positive (red) across most distances.
They tend to peak at a relatively short distance dpeak, for example,
dpeak ≈ 1.5 km in Orlando and dpeak ≈ 3.5 km in Milwaukee.

At greater distances, Barrier Scores gradually diminish and
at times become slightly negative (blue), meaning that some
highways are associated with a higher probability of social ties
connecting people who live far away from each other, compared
to the null model. The occasional negative Barrier Scores at very
short distances can be often explained by short highway segments
acting as bridges between otherwise disconnected regions (see the
example of Jacksonville in SI Appendix, Fig. S10).

Patterns consistent to those in Fig. 2 also emerge when
calculating the Barrier Scores only for smaller urban regions
that are not crossed by other major physical barriers such as
railroads and waterways (SI Appendix, Figs. S11 and S12).
Additionally, we experimented with an alternative null model
that discounts the contribution to the Barrier Score given by
potentially “confounded” social ties crossing both highways and
other barrier types (SI Appendix, Fig. S13). Even after this form
of conservative discounting, Barrier Scores remain positive up to
a distance of 8 km on average across cities (SI Appendix, Fig. S14).
These additional tests indicate that the barrier effect of highways
holds even in the absence of other types of physical barriers.

Regression Models Substantiate the Barrier Effect amid Other
Factors. To explain the city-level variation in Barrier Scores, we
create a parsimonious ordinary least squares model across the 50
cities with three key explanatory variables, illustrated in Fig. 3:
1) the total highway length within the metropolitan area, 2) how
much the Twitter user population is fragmented by highways,
as measured by the Highway Fragmentation Index (Eq. 5 in
Materials and Methods), and 3) the user population density in the
metropolitan area as a control variable and normalizing factor
for highway length. We check the model for robustness in SI
Appendix, Fig. S15.

The significant regression coefficients (Fig. 3) reveal that cities
with high Barrier Scores typically have longer highway networks
(� = 0.469), a user population less fragmented by highways (� =
−0.257), and a lower user population density (� = −0.390).
These results are intuitively explained by varying each factor
individually while holding the others constant. First, at same

Fig. 2. The Barrier Scores across the top 50 metropolitan areas in the United
States are consistently positive. (Left) Heatmap of all Barrier Scores B(d)
grouped into 0.5 km bins of social tie distance. Only statistically significant
values of B(d) are shown (P < 0.01). Color denotes Barrier Score, square size
is proportional to the fraction of social ties in each distance band relative to
all ties in the city. All cities have positive Barrier Scores over most distances.
Often, there is a smoothly reached peak distance, for example in Orlando at
around dpeak ≈ 1.5 km. The Top row labeled “ALL CITIES” reports the distance-
binned Barrier Scores averaged over all cities. (Right) The bar plot labeled
“CITY” reports the Barrier Score B calculated considering all ties with distances
up to 10 km. All results shown are averaged over 20 randomized runs of the
null model.

fragmentation and density of the user population, cities with a
longer highway network require more frequent highway crossings
to maintain social connections. Yet, the number of crossings
increases more rapidly for the null model than for the real social
network, thus yielding higher Barrier Scores. Second, the negative
coefficient of the fragmentation variable is consistent with the
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Highway length
(log)

0.469
(0.139)

Barrier Score
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Fragmentation
(log)

−0.257
(0.129)

User population
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−0.390
(0.139)

Constant 0.000
(0.125)

***

***

**

Fig. 3. Ordinary least squares regression across 50 cities reveals corre-
lations between the Barrier Score and spatial features. The Barrier Score
increases 1) with increasing highway length, 2) with decreasing fragmenta-
tion, 3) with decreasing user population density. The sketches on the Right
illustrate low and high values for the three features, that are highway length,
fragmentation, and user population density. Highways and user population
are depicted via lines and dots, respectively. Gray backgrounds illustrate the
signs of the regression coefficients. ***P < 0.01, **P < 0.05, and *P < 0.1.
Observations: 50 and R2

adj = 0.231.

semantics of our null model: Cities where the user population is
concentrated in a few areas attract social interactions from many
peripheral areas (32), as reflected by the spatial gravity law in
the null model. When these highly populated areas are separated
by highways from the rest of the city, the behavior of the null
model is unaffected, but the likelihood of creating a social tie
that crosses a highway is comparatively lower in the empirical
data, thus yielding a higher Barrier Score. Third, given the same
highway length and spatial fragmentation, individuals have fewer
opportunities to form social ties close by when there are fewer
people around (2). The resulting longer ties end up crossing more
highways in the null model than in the empirical data.

We now complement our city-level model with multivariate
regression models that describe the variability of social connec-
tivity between census tracts. These fine-grained models allow us
to verify whether the relationship between highways and social
ties holds at a more granular spatial scale while controlling for
local socioeconomic characteristics that are known to affect social
connections within cities (33). The tract-level perspective allows
for an investigation of the barrier effect independent of our
null model, simply by finding associations between the observed
number of social ties between pairs of tracts and six variables: 1)
the average number of highways crossed by social ties between
tracts, 2) the average number of other physical barriers (railways
and waterways) crossed by those ties, 3) the difference in average
household income, 4) a dummy variable indicating whether the
two tracts have the same racial majority group, and two controls
for 5) distance and 6) user population. The use of the majority
group to characterize tracts is common in literature dealing with
racial segregation in cities (20, 34). In SI Appendix, section A, we
cross-check this design choice with alternative approaches. The
sample behind the models is composed of all 2,669,688 census
tract pairs that are connected by at least one social tie either in
the empirical data or the null model (SI Appendix, Table S5).

The results in Table 1 confirm the expectation that pairs of
tracts with shorter distance, higher user population, and higher
socioeconomic similarity exhibit more social ties. Even after

adjusting for these factors (Model 6 in Table 1), a significant
negative correlation persists between the number of highways
separating tracts and the quantity of social connections (� =
−0.013). The coefficient representing highways remains negative
and significant even after controlling for the presence of other
major physical barriers (railways and waterways). Notably, the
effect size of highways is comparable to that of income variables
(� = −0.018) and racial similarity (� = 0.023), indicating
that highways may be as influential as socioeconomic factors
in contributing to social fragmentation. These results replicate
when fitting city-specific models (SI Appendix, Fig. S16). In
SI Appendix, section J we explain the models and variables in
greater detail and corroborate the robustness of our results by
experimenting with alternative models (SI Appendix, Tables S6
and S12). The sign of the coefficient for highways turns positive
in only one model specification where the sample is extended to
all possible tract pairs (SI Appendix, Table S6). As detailed in SI
Appendix, section J, this sign flipping is explained by the sparsity
of the data when considering all census tract pairs and ultimately
indicates that our data provides evidence for a barrier effect mostly
for areas with higher population density and highway presence.

The predictive power of this regression model is limited
(R2

adj = 0.05) because social tie formation is a complex
phenomenon that is hard to predict, especially with the limited
data at our disposal. Nevertheless, the regression results show that
the presence of highways is associated to a lower likelihood of
social tie formation, and that the chances of spurious correlation
are lower than 1% as measured by the P-values of the coefficients.

The sign and significance of the regression model’s coefficients
is preserved when using a Barrier Score-like metric between two
tracts as the dependent variable, simply defined as the ratio
between the number of real and null ties connecting them (SI
Appendix, Table S7). As a sanity check, we also fit a regression
model on the number of null ties, and obtain nonsignificant
coefficients for the number of highways crossed, which is expected
since the null model is oblivious to highways (SI Appendix,
Table S8).

Last, when examining tract pairs across fixed distances, we
observe that the coefficient for the number of highways increases
with distance, turning positive beyond d = 20 km (SI Appendix,
Fig. S18). This pattern is consistent with the diminishing Barrier
Scores over distance (Fig. 2), and suggests that highways represent
barriers to social ties predominantly at shorter distances, while
they may foster connectivity at longer distances.

Barrier Scores Are Consistent with Racial Segregation. To high-
light the practical implications of our quantitative findings, we
now frame them within a broader historical context, with a
particular focus on racial residential segregation. Race is only
one of many social categories that can influence the formation of
social connections. However, the Interstate Highway System—
which we study here in the urban context—is highly relevant
for aggravating racial segregation in US cities (35), making the
association of our Barrier Score with racial residential segregation
a compelling case study. Overwhelming historical records show
how urban highway construction in the name of “urban renewal”
has been frequently used as a racist policy toolbox to purposefully
disrupt or isolate Black neighborhoods (36), together with other
de jure segregation tools like redlining (9). Such exclusionary
urban policies, put in place decades ago, have literally cemented
racial divides in US cities and have therefore not lost any
of their societal relevance today (28, 37). Indeed, the US
Department of Transportation acknowledges this issue in its
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Table 1. Ordinary least squares regression models on the number of social connections between pairs of census
tracts including spatial and sociodemographic features

Number of social ties (log)
(1) (2) (3) (4) (5) (6)

Nr. of highways crossed (log) −0.025∗∗∗ −0.013∗∗∗
(0.003) (0.003)

Nr. of railways and waterways crossed (log) −0.018∗∗∗ −0.013∗∗∗
(0.005) (0.004)

Income abs. difference −0.019∗∗∗ −0.018∗∗∗
(0.002) (0.001)

Racial similarity 0.026∗∗∗ 0.023∗∗∗
(0.003) (0.003)

Distance (log) −0.101∗∗∗ −0.086∗∗∗ −0.087∗∗∗ −0.099∗∗∗ −0.101∗∗∗ −0.081∗∗∗
(0.013) (0.014) (0.016) (0.013) (0.013) (0.015)

User population (product log) 0.029∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0.024∗∗∗ 0.019∗∗
(0.008) (0.007) (0.008) (0.008) (0.008) (0.008)

Metro fixed effect Yes Yes Yes Yes Yes Yes
Observations 2,669,688 2,669,688 2,669,688 2,669,688 2,669,688 2,669,688
R2 0.042 0.043 0.043 0.045 0.047 0.051

All the models include the metropolitan area as fixed effect. Crucially, the number of social ties between two tracts decreases with the number of highways that are crossed, after
controlling for distance, user population, and socioeconomic differences between the tracts. All variables indicated with (log) are transformed using log10(1+ xij) to consider zero values.
SEs are clustered at the metropolitan area level. ***P < 0.01, **P < 0.05, and *P < 0.1.

2023 “Reconnecting Communities Pilot Program,” an “initiative
to reconnect communities that are cut off from opportunity and
burdened by past transportation infrastructure decisions” (38).

In the past, the decisions on where to place new highways
within the urban fabric were often racially motivated, following
different considerations. Highways either could embody a policy
aimed at segregating Black people from the rest of the population
(39), thus forming an interracial barrier; or highways could
be purposefully built through Black neighborhoods, both with
the intention to disrupt them and to avoid disturbances for
White neighborhoods (40), thus forming an intraracial barrier. As
illustrated in Fig. 4, we therefore take a closer look at three groups
of cities: cities with top Barrier Scores (Cleveland, Orlando,
Milwaukee, in Fig. 4 A–C ); cities with highways known from
the historical literature as interracial barriers (Oklahoma City,
Detroit, Austin, in Fig. 4 D–F ); and cities with highways known
as intraracial barriers (Columbus, Richmond, Nashville, in Fig. 4
G–I ). Strikingly, for all case studies, highways that are historically
associated with racial segregation also display high Highway
Barrier Scores. For each of these nine cities, we discuss the local
historical context of highway development and its relation to
racial segregation in SI Appendix, section U, summarized in the
following paragraphs.

All three cities with the highest Barrier Scores, i.e., Cleveland,
Orlando, and Milwaukee, have an abundant history of racial
segregation by means of infrastructure. Cleveland, the city with
the highest Barrier Score, is one of the poorest and most racially
segregated among major US cities (41). Here, the northern part of
I-77 separates majority Black neighborhoods in the east from the
rest of the city (Fig. 4A). Orlando (Fig. 4B), as of today, remains
highly segregated along the I-4. The construction of the I-4 and
the Expressway 408 particularly disrupted the once thriving Black
neighborhood of Parramore (42). Last, Milwaukee (Fig. 4C ) is
also a highly segregated city, with majority Black neighborhoods
like Bronzeville in the North and a historically “solidly Polish”
South Side (43). Here, the construction of the I-43 disrupted
and displaced numerous Black communities such as Bronzeville.

Next, we discuss the three cities with highways as interracial
barriers. In Oklahoma City (Fig. 4D), the “urban renewal”

highway construction projects had particularly dire impacts on
historically Black neighborhoods such as Deep Deuce (44).
As of today, the I-235 in Oklahoma City remains a clearly
perceived division line between majority Black and majority
White neighborhoods (45). In Detroit (Fig. 4E), the construction
of several highways during “urban renewal” erased and eroded
numerous historically Black neighborhoods such as Black Bottom
and Paradise Valley (46). Here, “expressway displacement”
(46) combined with pronounced discrimination led to several
housing crises over the last decades, severely impacting the Black
population. Last, in the city of Austin (Fig. 4F ), the I-35 was
built along East Avenue, an intentionally enforced segregation
line whose impacts are visible up to this day (47). At the same
time, the I-35, for which expansion plans are currently underway
with 4 billion USD allocated (28, 48), stands out with a high
Barrier Score.

Finally, three cities from our case studies are well known
for their intraracial highway barriers. Columbus (Fig. 4G) is a
particularly startling example of highway construction as deliber-
ate neighborhood destruction (49), with today’s highway routes
aligning with former redlining maps. The most severely impacted
neighborhoods like Flytown, Hanford Village, or Bronzeville,
were economically disadvantaged and predominantly Black; at
the same time, the close-by but predominantly White, affluent
neighborhood Bexley was spared from the highways (49, 50). In
Richmond (Fig. 4H ), highway construction and segregationist
housing policies interacted to create a “concentration of racialized
poverty” (51) that lasts until the present day. Richmond’s
neighborhood of Jackson Ward, formerly dubbed “Black Wall
Street,” was bisected by the I-95 and the I-64/I-95 interchange,
ultimately leading to its decline. Finally, in Nashville (Fig. 4I ), the
I-40 was routed through a bustling Black neighborhood without
any appraisal of potential consequences for the community,
bisecting the once-thriving Jefferson Street, and at a larger scale
undermining Black commercial and educational institutions,
decisively contributing to today’s high poverty rates in the
area (52).

Segments with negative Highway Barrier Scores in Fig. 4
are due to the varying spatial distribution of ties crossing
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Fig. 4. Historical case studies of highways associated with racial segregation. Highways are in color, following the color coding of Fig. 2 (red: positive Barrier
Score, blue: negative Barrier Score, white: insufficient data). For a granular representation, and exclusively for the purpose of this visualization, we manually
partitioned the highway network into segments by splitting it at junctions and sharp bends, and dividing long straight segments into shorter subsegments
where appropriate. Results are consistent across different segmentation strategies, as shown in SI Appendix, Fig. S20. Because the Highway Barrier Scores
are calculated on each segment independently, adjacent highway sections might exhibit rather different scores. Brown rectangles denote historically relevant
areas. Black dotted areas denote a city’s districts with a Black population share in the upper quartile. (A–C) Top 3 Barrier Scores: Cleveland, OH; Orlando, FL; and
Milwaukee, WI. Top Barrier Scores are consistent with these cities having well-known histories of highway-related racial segregation. (D–F ) Interracial Barriers:
Oklahoma City, OK; Detroit, MI; Austin, TX. The barriers between Black and non-Black neighborhoods are clearly visible around I-235, the 8 Mile Road, and I-35,
respectively. Detroit additionally features intraracial barriers around M-10, I-94, and I-75. (G–I) Intraracial barriers: Columbus, OH; Richmond, VA; and Nashville,
TN. Here, the focus is on historically Black neighborhoods like Hanford Village, Jackson Ward, or Jefferson Street, respectively, that have been purposefully
demolished via highway construction.

different highway segments. Since long-distance ties have a
higher tendency of yielding negative Barrier Scores (SI Appendix,
Fig. S18), when a highway is crossed by more long-distance
ties than short-distance ones, its overall Highway Barrier Score
can tip toward negative values (see the example of Orlando in SI
Appendix, Fig. S19). This pattern is not common to all highways,
and the Barrier Score is consistently positive for many of them,
particularly for all the highways named in Fig. 4.

This historic contextualization is highly relevant in connection
with our research. For all these nine cities, historic spatial
divides are reflected in our contemporary analysis of social ties:
All investigated highways display high Highway Barrier Scores.
While a broader, systematic investigation that checks every

possible highway section and historical note is outside of the
scope of our research, these findings add another piece of evidence
consistent with the established concept that urban highways in
the United States have a strong relation with government-backed
racial segregation (9). Now our research additionally shows that
reduced social connectivity in the presence of highways can be
quantitatively detected at high resolution.

Discussion and Conclusion

To further gauge the robustness of our results, we conduct four
experiments. First, to check that high Barrier Scores are specific to
highways among all street types, we replicate the analysis on other
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categories of roadways. While these road types also yield positive
Barrier Scores, they are markedly lower than those associated with
highways (SI Appendix, Fig. S21). For example, for the lowest
distance d = 0.5 km, B(d) for highways is around +12%, while
it is +8% for primary roads, +5% for secondary roads, and +4%
for residential streets. The B(d) values decrease with distance and
retain this order. Lower Barrier Scores for less trafficked streets
are intuitive, as such streets can be crossed more easily on foot,
corroborating urban planning literature which suggests that the
traversability of streets influences social connectivity (3, 10).

Second, we check whether the higher Barrier Scores for high-
ways might be due to their lower total length compared to other
street types. To control for this length imbalance, we recalculate
the Barrier Scores using a simulated, randomized version of the
highway network that preserves the total length of highways
but alters their spatial distribution (SI Appendix, section P). The
comparison between empirical and randomized highway layouts
reveals significantly reduced Barrier Scores in the randomized
scenarios (SI Appendix, Fig. S22), confirming that the spatial
positioning of highways plays a more important role than their
total length.

Third, we recalculate the Barrier Scores taking into account
only residents of urban versus suburban areas. Barrier Scores
for urban areas follow closely the pattern obtained for the full
dataset, whereas scores for suburban areas are generally lower
and less stable (SI Appendix, Fig. S23), indicating that our data
do not provide strong evidence in support of a barrier effect in
suburban and rural areas. Tract-level regressions for both urban
and suburban areas yield coefficients that are consistent with the
models that consider all tracts (SI Appendix, Tables S13 and S14).

Fourth, we replicate our findings on a distinct social network:
Gowalla. It is a location-based social network platform where
users connect with friends and share their own location with
them through check-ins (53). The Gowalla dataset contains five
cities with sufficient data coverage (SI Appendix, Table S15). The
Barrier Scores derived from Gowalla ties are notably higher than
those from Twitter across all distances (SI Appendix, Fig. S24).
Considering Gowalla’s emphasis on fostering real-life interactions
among users (its mission being “keep up with your friends in the
real world”), it is reasonable to infer that this platform’s social
ties might be inherently stronger than the ties on Twitter which
does not have this emphasis. This observation suggests that the
interplay between highways and social connections may be even
more pronounced for stronger social ties.

Being first of its kind, our work does not fully cover
additional aspects of the relationship between social connectivity
and spatial features open for future research. The relationship
between highways and social connectivity is potentially subject
to confounding factors such as social dynamics, amenities, terrain
morphology, or public transit (6, 7, 54). The Barrier Score we
derived likely reflects a composite influence of these elements,
and more refined spatial models could help to disentangle them.
However, estimating their effect on social connectivity would
require a wider set of data and methodologies. For example, one
could hypothesize that the barrier effect is mitigated by physical
colocation that enables and strengthens social connectivity. To
test this hypothesis, one would need to tap into individual mo-
bility traces with sufficient temporal and geographical resolution
to estimate prolonged and repeated physical colocation in work
places or third places (such as bars, gyms, or parks). The use
of microscale mobility datasets (e.g., refs. 20 and 55) holds
great potential to expand on our findings. Furthermore, our null
model provides a somewhat reductive perspective on the interplay

between social networks and highways. For example, it does not
distinguish cases where a highway walls off two individuals from
cases where it facilitates them to connect.

Additionally, the study’s observational design means that our
null model is limited to considering rewiring of existing social
ties, so it cannot account for the possibility of ties appearing or
vanishing in the absence of highways. Last, our reliance on social
media data limits representativeness (56), a well-documented
issue in social media research (57). Although we found a strong
correlation between user volume and user population size across
the 50 cities studied, and the racial and income distributions
of our data are remarkably close to those of the census (SI
Appendix, Figs. S2 and S3), our findings may not be generalizable
to the entire population of these areas. In SI Appendix, section K
we check the robustness of our results to the definition of
sociodemographic confounders (SI Appendix, Tables S9 and S10
and Fig. S17) and using a reweighting strategy to account for
the gap between our Twitter data and census data (SI Appendix,
Table S11).

In conclusion, by going beyond demographic approaches,
observing social ties explicitly, we have shown that urban high-
ways are on average associated with decreased social connectivity
at short distances, in all 50 US cities considered, even after
controlling for other physical barriers and sociodemographic
factors. Our analysis adds a highly granular perspective to former
work, corroborating and quantifying the intuition that urban
highways are indeed barriers to social ties.

At the same time, our findings present a nuanced view of the
relationship between highways and social ties. First, highways
are not the only physical barrier to social ties. The other
two major physical barriers in urban contexts in the United
States—waterways and railways (58–60)—are also associated
with reduced social connectivity (Table 3). Future studies may
investigate the role of other spatial factors. Second, not all high-
ways are barriers; some may serve as connectors between otherwise
isolated areas (SI Appendix, Fig. S10), and highways are generally
associated with increased connectivity at greater distances, likely
due to their role in facilitating long-distance travel (SI Appendix,
Fig. S18). As a result, a single highway segment may act as a barrier
for some individuals while simultaneously offering opportunities
for connection to others (SI Appendix, Fig. S19). Third, while
our data provide strong evidence for a barrier effect in densely
populated urban regions, the limited data outside urban areas
preclude us from drawing any definitive conclusions for suburban
and rural regions (SI Appendix, Fig. S23). Fourth, the observed
highway barrier effects vary among cities. In certain cities, our
Barrier Scores are relatively low and concentrated at very short
distances. Such variation across cities can largely be attributed
to the interplay between highway density and their placement
relative to population density (Fig. 3).

Despite these caveats, the potential benefits of highways
acting as facilitators of social connections in limited scenarios
come with perpetuating car dependency via sprawl and induced
demand (61), and with a wide array of considerable harms (26)
including traffic violence, environmental damage, social isolation,
and injustice. The social harms are corroborated by our nine
historical case studies which illustrate that highway barrier effects
may be considerable and long-lasting (Fig. 4).

To be clear, our approach is so far strictly correlational and
cannot establish causality: From static data, it is impossible to
determine how thinned-out social ties across a highway section
already were before its construction, say because of an existing
racial divide (9, 46); or to which extent a new highway caused

PNAS 2025 Vol. 122 No. 10 e2408937122 https://doi.org/10.1073/pnas.2408937122 7 of 10



social ties to thin out. Scrutinizing causality would require lon-
gitudinal data, for example, before and after the construction or
removal of an urban highway. Nevertheless, within the historical
context, our results paint a clear picture. Thus, our research
could already help remediate previous political failures (9, 39) and
enrich the debate on contemporary highway policies (28, 38, 48),
to account for exclusionary effects of infrastructure, and to
inform reparative justice approaches (24, 62). More generally,
our research contributes to a more careful, evidence-based
consideration of the social fabric in urban planning.

Materials and Methods

Social Network. We rely on an existing collection of georeferenced tweets
posted between 2012 and 2013, when the Twitter mobile app’s default setting
was to annotate all tweets with the precise geographic coordinates at the time
of posting. Previous work (27) used the friend-of-friend algorithm to identify the
home locations of users with a sufficient number of posts with high accuracy.
The dataset comes with the full network of mutual followership among all users
whose home location is within the 50 most populous metropolitan areas in
the United States. Overall, the network contains 982,459 users and 2,711,185
social ties between them. This dataset has proven to be a reliable resource to
study spatial social networks within cities (29, 63). The home location estimation
procedure, initial data cleaning steps, present statistics on the data, and its
representativeness are described in detail in SI Appendix, sections A and B (SI
Appendix, Figs. S1–S4).

From the spatial perspective, we model social ties as straight segments
connecting the home locations of two users. On a selection of four cities, we
tested the use of shortest walking path between home locations as an alternative
spatial representation (SI Appendix, Fig. S25). The variation of the Barrier Score
with respect to walking distance follows a very similar pattern to the Barrier
Score calculated with beeline distance. Moreover, the Barrier Score is often
higher when considering walking distance, suggesting that our estimates of the
barrier effect of highways are conservative.

Street Network. We obtain the street network data for all 50 metropolitan
areas of this study from the open and crowd-sourced platform OSM (30). We
refer to the highway network as the network of highways (freeways, motorways,
interstates) and obtain the corresponding data from OSM by filtering street
network segments by their highway tag attribute. In addition, for all the 50
cities, we obtain their railway network and the paths of rivers crossing them
using the railway and waterway tag attributes. The network geometries are further
simplified with OSMnx, and for the case studies, manually in the open-source
geographic information system (GIS) software QGIS (see SI Appendix, section C
for details on OSM queries and simplification). To determine the number of
social ties crossing highways, we perform a spatial join between the social ties
and the highway network, and obtain the intersection points. We use the same
procedure to determine the intersections with railroads and rivers.

Spatial Null Model. Our null model is based on the Directed Configuration
Model (DCM) (64), a widely used graph randomization method that rewires
links at random while preserving the nodes’ degree. To also preserve the spatial
patterns of connectivity, we augment the DCM with the spatial gravity model, an
empirical relationship stating that the volume of social connections between two
areas is proportional to the number of inhabitants, and inversely proportional
to their distance (65). In practice, we follow an iterative procedure in which each
tie (i, j) is rewired to form a new tie (i, k) such that user k is 1) approximately at
the same distance from i as j is (dij = dik ), and 2) selected among all candidate
nodes with probability that is proportional to the density of other users around
it. Details on the algorithm and its properties are discussed in SI Appendix,
section D.

Overall, the algorithm generates a random social network that retains both
spatial and social connectivity patterns of the original data, while disregarding
any spatial elements between the two endpoints of a social connection.

Barrier Score. Consider a set E of social ties (i, j), each characterized by the
Euclidean distance dij between user i and user j. We denote by cij the number
of highways that a tie (i, j) crosses. We count the average number of highways
that ties in E cross by unit distance:

cE =
1
|E|

∑
(i,j)∈E

cij

dij
. [1]

Intuitively, to calculate the Barrier Score, one could directly contrast the number
of crosses in the real social network cE with the same number calculated in the
null model cnull

E , which we average over 20 random realizations. In practice, the

relationship between cE and cnull
E varies considerably when considering social

ties across different ranges of length, and tends to converge to 0 when all long-
range social ties are considered (as hinted at by Fig. 2). Therefore, to characterize
cities with a score that represents all distances equally, we first compute a
distance-binned Barrier Score for ties connecting users whose distance is within
a distance bin d:

B(d) =
cnull

E (d)− cE(d)

cE(d)
, [2]

The dij deterrence in Formula [1] evens out variations that may overrepresent
the contribution of longer ties within the same bin. For bins with narrow width,
the impact of dij is negligible (SI Appendix, Fig. S26). To verify the statistical

significance of B(d), we ran t tests to compare cE(d), and cE
null(d), the two

quantities that compose it. The test checks the null hypothesis that the mean
of the number of highways crossed by null social ties (cE

null(d)) is equal to the

observed number of social ties (cE(d)). The set of empirical values of cE
null(d) is

given by the random realizations of the null model.
Finally, we compute a Barrier Score as an average of the statistically significant

values of B(d) over k distance bins up to a maximum distance D:

B ≤ (D) =
1
k

D∑
d=0

B(d). [3]

We set the width of distance bins to 0.5 km; therefore, for example, B(2)
considers all social ties of length between 2 km and 2.5 km. To define the city-
wide Barrier Score in the main results we use 10 km as the reference value of
D and refer to it simply as B := B≤(10). A sensitivity analysis of the results of
regressionmodels acrossdifferent valuesof D is reported inSIAppendix, section I.

Spatial Fragmentation. We measure the spatial fragmentation of a metropoli-
tan area by highways using a modified version of the Railroad Division Index
(RDI) (5):

RDI = 1−
∑

i

(
areai

areatotal

)2
, [4]

where areai is the area of the i-th subunit of fragmented space, enclosed by
highways. In line with the RDI definition, we derive the subunits within a
city by first combining the highway network and the metropolitan urban area
boundaries and then polygonizing their spatial union (66). To account for user
population density, we weight areas by the number of users living in them, and
define the Highway Fragmentation Index as

HFI = 1−
∑

i

(
usersi

userstotal

)2
[5]

A minimum fragmentation index of 0 describes a city where all residents
could reach each other without crossing any highway, whereas a maximum
fragmentation close to 1 denotes a city where the user population is spread
uniformly across areas that are enclosed by highways.
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Data, Materials, and Software Availability. Data and code have been de-
posited in GitHub (https://github.com/NERDSITU/urban-highways) (67). Some
study data are available: The study uses online social network data with accurate
coordinates of the home location of the users. For privacy reasons, this part of
data cannot be shared publicly. The original data are available upon request in
an anonymized form by contractual agreement. The point of contact for requests
is Eszter Bokányi (e.bokanyi@uva.nl).
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